Issue
J. Space Weather Space Clim.
Volume 7, 2017
Developing New Space Weather Tools: Transitioning fundamental science to operational prediction systems
Article Number A35
Number of page(s) 17
DOI https://doi.org/10.1051/swsc/2017032
Published online 22 December 2017
  • Barlier F, Berger C, Falin JL, Kockarts G, Thuillier G. 1978. A thermospheric model based on satellite drag data. Ann Geophys 34: 9–24.
  • Box GEP, Jenkins G. 1970. Time series analysis: forecasting and control, Holden-Day, San Francisco, ISBN-10: 0816211043 / ISBN-13: 9780816211043.
  • Bruinsma SL. 2015. The DTM-2013 thermosphere model. J Space Weather Space Clim 5: A1. DOI: 10.1051/swsc/2015001. [CrossRef] [EDP Sciences]
  • Dudok de Wit T. 2011. A method for filling gaps in solar irradiance and solar proxy data. Astron Astrophys 533: A29. DOI: 10.1051/0004-6361/201117024. [CrossRef] [EDP Sciences]
  • Dudok de Wit T, Bruinsma S, Shibasaki K. 2014. Synoptic radio observations as proxies for upper atmosphere modelling. J Space Weather Space Clim 4: A06. DOI: 10.1051/swsc/2014003. [CrossRef]
  • Dudok de Wit T, Bruinsma S. 2017. The 30 cm radio flux as a solar proxy for thermosphere density modelling. J Space Weather Space Clim 7: A9. DOI: 10.1051/swsc/2017008. [CrossRef]
  • Dudok de Wit T, Lefèvre L, Clette F. 2016. Uncertainties in the sunspot numbers: estimation and implications. Sol Phys 291: 2709–2731. DOI: 10.1007/s11207-016-0970-6. [NASA ADS] [CrossRef]
  • Floyd L, Newmark J, Cook J, Herring L, McMullin D. 2005. Solar EUV and UV spectral irradiances and solar indices. J Atmos Sol Terr Phys 67: 3–15. DOI: 10.1016/j.jastp.2004.07.013. [NASA ADS] [CrossRef]
  • Henney J, Toussaint WA, White SM, Arge CN. 2012. Forecasting F10. 7 with solar magnetic flux transport modeling. Space Weather 10: S02011 DOI: 10.1029/2011SW000748. [NASA ADS] [CrossRef]
  • Nicolet M, Bossy L. 1985. Solar radio fluxes as indices of solar activity. Planet Space Sci 33: 507–555. DOI: 10.1016/0032-0633(85)90096-0. [CrossRef]
  • Percival DB, Walden AT, Spectral analysis for physical applications, Cambridge University Press, Cambridge, United Kingdom, ISBN-10: 0521435412 / ISBN-13: 978-0521435413, 1993. [CrossRef]
  • R Core Team. 2017. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, ISBN 3-900051-07-0, https://www.R-project.org
  • Schmahl EJ, Kundu MR. 1994. Solar cycle variation of the microwave spectrum and total irradiance. Sol Phys 152: 167–173. DOI: 10.1007/BF01473200. [NASA ADS] [CrossRef]
  • Tanaka H, Castelli JP, Covington AE, Krüger A, Landecker TL, Tlamicha A. 1973. Absolute calibration of solar radio flux density in the microwave region. Sol Phys 29: 243–262. DOI: 10.1007/BF00153452. [CrossRef]
  • Tapping KF. 2013. The 10.7 cm solar radio flux (F10. 7). Space Weather 11: 394–406. DOI: 10.1002/swe.20064. [NASA ADS] [CrossRef]
  • Zdunkowski W, Trautmann T, Bott A. 2007. Radiation in the atmosphere: a course in theoretical meteorology, 2nd edn. Cambridge University Press, ISBN 978-0-521-87107-5. [CrossRef]
  • Zhang G, Patuwo B, Hu M. 1998. Forecasting with artificial neural networks: the state of the art. Int J Forecast 14: 35–62. DOI: 10.1016/S0169-2070(97)00044-7. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.