Issue
J. Space Weather Space Clim.
Volume 7, 2017
Developing New Space Weather Tools: Transitioning fundamental science to operational prediction systems
Article Number A36
Number of page(s) 12
DOI https://doi.org/10.1051/swsc/2017037
Published online 22 December 2017
  • Aschwanden MJ, Alexander D. 2001. Flare plasma cooling from 30 MK down to 1 MK modeled from Yohkoh, GOES, and TRACE observations during the Bastille day event (14 July 2000). Sol Phys 204: 91–120. [NASA ADS] [CrossRef] [Google Scholar]
  • Benz AO, Krucker S. 1999. Heating events in the quiet solar corona: multiwavelength correlations. Astron Astrophys 341: 286–295. [Google Scholar]
  • Bornmann PL, Speich D, Hirman J, Matheson L, Grubb R, Garcia HA, Viereck R. 1996. GOES X-ray sensor and its use in predicting solar-terrestrial disturbances. In: SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation. International Society for Optics and Photonics, pp. 291–298. [Google Scholar]
  • Bradshaw S, Mason H. 2003. A self-consistent treatment of radiation in coronal loop modelling. Astron Astrophys 401: 699–709. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Cargill PJ, Mariska JT, Antiochos SK. 1995. Cooling of solar flares plasmas. 1: theoretical considerations. Astrophys J 439: 1034–1043. [NASA ADS] [CrossRef] [Google Scholar]
  • Cargill PJ, Bradshaw SJ, Klimchuk JA. 2012. Enthalpy-based thermal evolution of loops. II. Improvements to the model. Astrophy J 752: 161. [NASA ADS] [CrossRef] [Google Scholar]
  • Chamberlin PC, Woods TN, Eparvier FG. 2007. Flare irradiance spectral model (FISM): daily component algorithms and results. Space Weather 5: 1–23 [NASA ADS] [CrossRef] [Google Scholar]
  • Chamberlin PC, Woods TN, Eparvier FG. 2008. Flare irradiance spectral model (FISM): flare component algorithms and results. Space Weather 6: 1–16 [CrossRef] [Google Scholar]
  • Chamberlin PC, Woods TN, Eparvier FG, Jones AR. 2009. Next generation X-ray sensor (XRS) for the NOAA GOES-R satellite series. In: SPIE Optical Engineering+ Applications. International Society for Optics and Photonics, p. 743802. [Google Scholar]
  • Chamberlin P, Milligan R, Woods T. 2012. Thermal evolution and radiative output of solar flares observed by the EUV variability experiment (EVE). Sol Phys 279: 23–42. [NASA ADS] [CrossRef] [Google Scholar]
  • Didkovsky L, Judge D, Wieman S, Woods T, Jones A. 2009. EUV spectrophotometer (ESP) in extreme ultraviolet variability experiment (EVE): algorithms and calibrations. In: The Solar Dynamics Observatory, Springer, New York, NY, pp. 179–205. [CrossRef] [Google Scholar]
  • Eparvier FG, Crotser D, Jones AR, McClintock WE, Snow M, Woods TN. 2009. The extreme ultraviolet sensor (EUVS) for GOES-R. In: SPIE Optical Engineering+ Applications, International Society for Optics and Photonics, p. 743, 804. [Google Scholar]
  • Eparvier F, Chamberlin P, Woods T, Thiemann E. 2015. The solar extreme ultraviolet monitor for MAVEN. Space Sci Rev 195: 293–301. [NASA ADS] [CrossRef] [Google Scholar]
  • Feldman U, Doschek G, Behring W, Phillips K. 1996. Electron temperature, emission measure, and X-ray flux in A2 to X2 X-ray class solar flares. Astrophys J 460: 1034. [NASA ADS] [CrossRef] [Google Scholar]
  • Freeland S, Handy B. 1998. Data analysis with the SolarSoft system. Sol Phys 182: 497–500. [NASA ADS] [CrossRef] [Google Scholar]
  • Ghoshdastidar PS. 2012. Heat transfer, Oxford University Press, New Delhi, India. [Google Scholar]
  • Hestroffer D, Magnan C. 1998. Wavelength dependency of the Solar limb darkening. Astron Astrophys 333: 338–342. [Google Scholar]
  • Hinteregger HE, Fukui K, Gilson BR. 1981. Observational, reference and model data on solar EUV, from measurements on AE-E. Geophys Res Lett 8: 1147–1150. [NASA ADS] [CrossRef] [Google Scholar]
  • Hock RA. 2012. The role of solar flares in the variability of the extreme ultraviolet solar spectral irradiance (Doctoral dissertation, University of Colorado at Boulder). ProQuest Dissertations Publishing. [Google Scholar]
  • Klimchuk JA. 2015. Key aspects of coronal heating. Philos Trans R Soc A 373: 20140–20256. [NASA ADS] [CrossRef] [Google Scholar]
  • Klimchuk J, Patsourakos S, Cargill P. 2008. Highly efficient modeling of dynamic coronal loops. Astrophys J 682: 1351. [NASA ADS] [CrossRef] [Google Scholar]
  • Klimchuk JA, Karpen JT, Antiochos SK. 2010. Can thermal nonequilibrium explain coronal loops? Astrophys J 714: 1239. [NASA ADS] [CrossRef] [Google Scholar]
  • Le H, Liu L, Wan W. 2012. An analysis of thermospheric density response to solar flares during 2001–2006. J Geophys Res: Space Phys 117: 1–8 [Google Scholar]
  • Lemen JR, Title AM, Akin DJ, Boerner PF, Chou C, et al. 2012. The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Sol Phys 275: 17–40. [NASA ADS] [CrossRef] [Google Scholar]
  • Li Y, Qiu J, Ding M. 2012. Analysis and modeling of two flare loops observed by AIA and EIS. Astrophys J 758: 52. [CrossRef] [Google Scholar]
  • Li Y, Qiu J, Ding M. 2014. Heating and dynamics of two flare loop systems observed by AIA and EIS. Astrophys J 781: 120. [CrossRef] [Google Scholar]
  • Lionello R, Alexander CE, Winebarger AR, Linker JA, Mikić Z. 2016. Can large time delays observed in light curves of coronal loops be explained in impulsive heating? Astrophys J 818: 129. [CrossRef] [Google Scholar]
  • MartÃnez-Galarce D, Harvey J, Bruner M, Lemen J, Gullikson E, Soufli R, Prast E, Khatri S. 2010. A novel forward-model technique for estimating EUV imaging performance: design and analysis of the SUVI telescope. In: SPIE Astronomical Telescopes+ Instrumentation, International Society for Optics and Photonics, p. 773237. [Google Scholar]
  • Neupert WM. 1968. Comparison of solar X-ray line emission with microwave emission during flares. Astrophys J 153: L59. [NASA ADS] [CrossRef] [Google Scholar]
  • Pierce AK, Slaughter CD. 1977. Solar limb darkening. Sol Phys 51: 25–41. [NASA ADS] [CrossRef] [Google Scholar]
  • Qian L, Burns AG, Chamberlin PC, Solomon SC. 2010. Flare location on the solar disk: modeling the thermosphere and ionosphere response. J Geophys Res: Space Phys 115: 1–11 [Google Scholar]
  • Qian L, Burns AG, Chamberlin PC, Solomon SC. 2011. Variability of thermosphere and ionosphere responses to solar flares. J Geophys Res: Space Phys 116: 1–14 [Google Scholar]
  • Qiu J, Longcope DW. 2016. Long duration flare emission: impulsive heating or gradual heating? Astrophys J 820: 14. [CrossRef] [Google Scholar]
  • Qiu J, Liu WJ, Longcope DW. 2012. Heating of flare loops with observationally constrained heating functions. Astrophys J 752: 124. [CrossRef] [Google Scholar]
  • Raftery CL, Gallagher PT, Milligan RO, Klimchuk JA. 2009. Multi-wavelength observations and modelling of a canonical solar flare. Astron Astrophys 494: 1127–1136. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Reale F. 2014. Coronal loops: observations and modeling of confined plasma. Living Rev Solar Phys 11: 1–94. [CrossRef] [Google Scholar]
  • Richards P, Fennelly J, Torr D. 1994. EUVAC: a solar EUV flux model for aeronomic calculations. J Geophys Res: Space Phys 99: 8981–8992. [NASA ADS] [CrossRef] [Google Scholar]
  • Rosner R, Tucker WH, Vaiana G. 1978. Dynamics of the quiescent solar corona. Astrophys J 220: 643–645. [NASA ADS] [CrossRef] [Google Scholar]
  • Ryan DF, Chamberlin PC, Milligan RO, Gallagher PT. 2013. Decay-phase cooling and inferred heating of M-and X-class solar flares. Astrophys J 778: 68. [NASA ADS] [CrossRef] [Google Scholar]
  • Smith S. 1997. The scientist and engineer's guide to digital signal processing, California Technical Pub., San Diego. [Google Scholar]
  • Sutton E, Forbes J, Nerem R, Woods T. 2006. Neutral density response to the solar flares of october and november, 2003. Geophys Res Lett 33: 1–5 [CrossRef] [Google Scholar]
  • Thiemann E, Chamberlin PC, Eparvier FG, Templeman B, Woods TN, Bougher SW, Jakosky BM. 2017. The MAVEN EUVM model of solar spectral irradiance variability at Mars: algorithms and results. J Geophys Res: Space Phys 122: 2748–2767. [Google Scholar]
  • Thomas R, Starr R, Crannell C. 1985. Expressions to determine temperatures and emission measures for solar X-ray events from GOES measurements. Sol phys 95: 323–329. [NASA ADS] [CrossRef] [Google Scholar]
  • Tobiska WK, Woods T, Eparvier F, Viereck R, Floyd L, Bouwer D, Rottman G, White O. 2000. The SOLAR2000 empirical solar irradiance model and forecast tool. J Atmos Solar-Terr Phys 62: 1233–1250. [NASA ADS] [CrossRef] [Google Scholar]
  • Viall NM, Klimchuk JA. 2012. Evidence for widespread cooling in an active region observed with the SDO atmospheric imaging assembly. Astrophys J 753: 35. [NASA ADS] [CrossRef] [Google Scholar]
  • Von Storch H, Zwiers FW. 2001. Statistical analysis in climate research, Cambridge University Press, New York, NY. [Google Scholar]
  • Warren HP. 2006. Multithread hydrodynamic modeling of a solar flare. Astrophys J 637: 522. [NASA ADS] [CrossRef] [Google Scholar]
  • Warren HP, Winebarger AR, Hamilton PS. 2002. Hydrodynamic modeling of active region loops. Astrophys J Lett 579: L41. [NASA ADS] [CrossRef] [Google Scholar]
  • Warren HP, Mariska JT, Doschek GA. 2013. Observations of thermal flare plasma with the EUV variability experiment. Astrophys J 770: 116. [NASA ADS] [CrossRef] [Google Scholar]
  • Woods TN, Hock R, Eparvier F, Jones AR, Chamberlin PC, et al. 2011. New solar extreme-ultraviolet irradiance observations during flares. Astrophys J 739: 59. [NASA ADS] [CrossRef] [Google Scholar]
  • Woods T, Eparvier F, Hock R, Jones A, Woodraska D, et al. 2012. Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): overview of science objectives, instrument design, data products, and model developments. Sol Phys 275: 115–143. [NASA ADS] [CrossRef] [Google Scholar]
  • Zeng Z, Qiu J, Cao W, Judge PG. 2014. A flare observed in coronal, transition region, and Helium I 10830 Å emissions. Astrophys J 793: 87. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.