Open Access
Issue |
J. Space Weather Space Clim.
Volume 8, 2018
Flares, coronal mass ejections and solar energetic particles and their space weather impacts
|
|
---|---|---|
Article Number | A13 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/swsc/2018001 | |
Published online | 16 February 2018 |
- Akioka M, Nagatsuma T, Miyake W, Ohtaka K, Marubashi K. 2005. The L5 mission for space weather forecasting. Adv Space Res 35: 65–69. DOI:10.1016/j.asr.2004.09.014. [CrossRef] [Google Scholar]
- Bavassano B, Dobrowolny M, Mariani F, Ness NF. 1982. Radial evolution of power spectra of interplanetary Alfvenic turbulence. J Geophys Res 87: 3617–3622. DOI:10.1029/JA087iA05p03617. [CrossRef] [Google Scholar]
- Beeck J, Wibberenz G. 1986. Pitch angle distributions of solar energetic particles and the local scattering properties of the interplanetary medium. ApJ 311: 437–450. DOI: 10.1086/164784. [NASA ADS] [CrossRef] [Google Scholar]
- Bieber JW, Matthaeus WH, Smith CW, Wanner W, Kallenrode M-B, Wibberenz G. 1994. Proton and electron mean free paths: the palmer consensus revisited. ApJ 420: 294–306. DOI:10.1086/173559. [Google Scholar]
- Bieber JW, Wanner W, Matthaeus WH. 1996. Dominant two-dimensional solar wind turbulence with implications for cosmic ray transport. J Geophys Res 101: 2511–2522. DOI:10.1029/95JA02588. [NASA ADS] [CrossRef] [Google Scholar]
- Bruno R, Carbone V. 2013. The solar wind as a turbulence laboratory. Living Rev Sol Phys 10: 2. DOI:10.12942/lrsp-2013-2. [Google Scholar]
- Burlaga LF, Turner JM. 1976. Microscale 'Alfven waves' in the solar wind at 1 AU. J Geophys Res 81: 73–77. DOI:10.1029/JA081i001p00073. [NASA ADS] [CrossRef] [Google Scholar]
- Burger RA, Potgieter MS, Heber B. 2000. Rigidity dependence of cosmic ray proton latitudinal gradients measured by the Ulysses spacecraft: implications for the diffusion tensor. J Geophys Res 105: 447–456. DOI:10.1029/2000JA000153. [Google Scholar]
- Chhiber R, Subedi P, Usmanov AV, Matthaeus WH, Ruffolo D, Goldstein ML, Parashar TN. 2017. Cosmic ray diffusion coefficients throughout the inner heliosphere from global solar wind simulation. ArXiv e-prints. [Google Scholar]
- Cohen CMS, Mason GM, Mewaldt RA, Wiedenbeck ME. 2014. The longitudinal dependence of heavy-ion composition in the 2013 april 11 solar energetic particle event. ApJ 793: 35. DOI:10.1088/0004-637X/793/1/35. [NASA ADS] [CrossRef] [Google Scholar]
- Committee on the Evaluation of Radiation Shielding for Space Exploration, N. R. C, Managing Space Radiation Risk in the New Era of Space Exploration, The National Academies Press, Washington, DC, 2008. ISBN 978-0-309-11383-0. [Google Scholar]
- Dalla S, Marsh MS, Laitinen T. 2015. Drift-induced deceleration of solar energetic particles. ApJ 808: 62. DOI:10.1088/0004-637X/808/1/62. [NASA ADS] [CrossRef] [Google Scholar]
- Dresing N, Gómez-Herrero R, Klassen A, Heber B, Kartavykh Y, Dröge W. 2012. The large longitudinal spread of solar energetic particles during the 17 january 2010 solar event. Sol Phys 281: 281–300. DOI:10.1007/s11207-012-0049-y. [Google Scholar]
- Dresing N, Gómez-Herrero R, Heber B, Klassen A, Malandraki O, Dröge W, Kartavykh Y. 2014. Statistical survey of widely spread out solar electron events observed with STEREO and ACE with special attention to anisotropies. A&A 567: A27. DOI:10.1051/0004-6361/201423789. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Dröge W, Kartavykh YY, Klecker B, Kovaltsov GA. 2010. Anisotropic three-dimensional focused transport of solar energetic particles in the inner heliosphere. ApJ 709: 912–919. DOI:10.1088/0004-637X/709/2/912. [NASA ADS] [CrossRef] [Google Scholar]
- Dröge W, Kartavykh YY, Dresing N, Heber B, Klassen A. 2014. Wide longitudinal distribution of interplanetary electrons following the 7 February 2010 solar event: observations and transport modeling. J Geophys Res: Space Phys 119: 6074–6094. DOI:10.1002/2014JA019933. [Google Scholar]
- Dröge W, Kartavykh YY, Dresing N, Klassen A. 2016. Multi-spacecraft observations and transport modeling of energetic electrons for a series of solar particle events in august 2010. ApJ 826: 134. DOI:10.3847/0004-637X/826/2/134. [NASA ADS] [CrossRef] [Google Scholar]
- Gardiner CW, Stochastic methods, vol. 13, 4th edn., Springer-Verlag, Berlin Heidelberg, 2009. [Google Scholar]
- Giacalone J. 2001. The latitudinal transport of energetic particles associated with corotating interaction regions. J Geophys Res 106: 15881–15888. DOI:10.1029/2000JA000114. [NASA ADS] [CrossRef] [Google Scholar]
- Giacalone J, Jokipii JR. 1999. The transport of cosmic rays across a turbulent magnetic field. ApJ 520: 204–214. DOI:10.1086/307452. [Google Scholar]
- Giacalone J, Jokipii JR. 2012. The longitudinal transport of energetic ions from impulsive solar flares in interplanetary space. ApJL 751: L33. DOI:10.1088/2041-8205/751/2/L33. [NASA ADS] [CrossRef] [Google Scholar]
- Goldreich P, Sridhar S. 1995. Toward a theory of interstellar turbulence. 2: Strong alfvenic turbulence. ApJ 438: 763–775. DOI:10.1086/175121. [NASA ADS] [CrossRef] [Google Scholar]
- Gopalswamy N, Davila JM, St. Cyr OC, Sittler EC, Auchère F, et al. 2011. Earth-affecting solar causes observatory (easco): a potential inte rnational living with a star mission from sun-earth L5. J Atmos Sol-Terr Phys 73: 658–663. DOI:10.1016/j.jastp.2011.01.013. [CrossRef] [Google Scholar]
- Gray PC, Pontius DH, Matthaeus WH. 1996. Scaling of field-line random walk in model solar wind fluctuations. Geophys Res Lett 23: 965–968. DOI:10.1029/96GL00769. [NASA ADS] [CrossRef] [Google Scholar]
- He H-Q, Qin G, Zhang M. 2011. Propagation of solar energetic particles in three-dimensional interplanetary magnetic fields: in view of characteristics of sources. ApJ 734: 74. DOI:10.1088/0004-637X/734/2/74. [Google Scholar]
- Isenberg PA. 1997. A hemispherical model of anisotropic interstellar pickup ions. J Geophys Res 102: 4719–4724. DOI:10.1029/96JA03671. [Google Scholar]
- Jokipii JR. 1966. Cosmic-ray propagation. I. Charged particles in a random magnetic field. ApJ 146: 480–487. DOI:10.1086/148912. [Google Scholar]
- Kopp A, Büsching I, Strauss RD, Potgieter MS. 2012. A stochastic differential equation code for multidimensional Fokker-Planck type problems. Comput Phys Commun 183: 530–542. DOI:10.1016/j.cpc.2011.11.014. [Google Scholar]
- Kóta J, Jokipii JR. 2000. Velocity correlation and the spatial diffusion coefficients of cosmic rays: compound diffusion. ApJ 531: 1067–1070. DOI:10.1086/308492. [NASA ADS] [CrossRef] [Google Scholar]
- Laitinen T, Dalla S. 2017. Energetic particle transport across the mean magnetic field: before diffusion. ApJ 834: 127. DOI:10.3847/1538-4357/834/2/127. [Google Scholar]
- Laitinen T, Dalla S, Kelly J, Marsh M. 2013a. Energetic particle diffusion in critically balanced turbulence. ApJ 764: 168. DOI:10.1088/0004-637X/764/2/168. [NASA ADS] [CrossRef] [Google Scholar]
- Laitinen T, Dalla S, Marsh MS. 2013b. Energetic particle cross-field propagation early in a solar event. ApJL 773: L29. DOI:10.1088/2041-8205/773/2/L29. [NASA ADS] [CrossRef] [Google Scholar]
- Laitinen T, Kopp A, Effenberger F, Dalla S, Marsh MS. 2016. Solar energetic particle access to distant longitudes through turbulent field-line meandering. A&A 591: A18. DOI:10.1051/0004-6361/201527801. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Laitinen T, Dalla S, Marriott D. 2017. Early propagation of energetic particles across the mean field in turbulent plasmas. Mon Not R Astron Soc 470: 3149–3158. DOI:10.1093/mnras/stx1509. [Google Scholar]
- Lario D, Kallenrode M-B, Decker RB, Roelof EC, Krimigis SM, Aran A, Sanahuja B. 2006. Radial and longitudinal dependence of solar 4-13 MeV and 27–37 MeV proton peak intensities and fluences: helios and IMP 8 observations. ApJ 653: 1531–1544. DOI:10.1086/508982. [NASA ADS] [CrossRef] [Google Scholar]
- Lario D, Aran A, Gómez-Herrero R, Dresing N, Heber B, Ho GC, Decker RB, Roelof EC. 2013. Longitudinal and radial dependence of solar energetic particle peak intensities: STEREO, ACE, SOHO, GOES, and MESSENGER Observations. ApJ 767: 41. DOI:10.1088/0004-637X/767/1/41. [NASA ADS] [CrossRef] [Google Scholar]
- Lavraud B, Liu Y, Segura K, He J, Qin G, et al. 2016. A small mission concept to the SunEarth Lagrangian {L5} point for innovative solar, heliospheric and space weather science. J Atmos Sol-Terr Phys 146: 171–185. DOI:10.1016/j.jastp.2016.06.004. //www.sciencedirect.com/science/article/pii/S1364682616301456. [CrossRef] [Google Scholar]
- Matthaeus WH, Gray PC, Pontius DH Jr., Bieber JW. 1995. Spatial structure and field-line diffusion in transverse magnetic turbulence. Phys Rev Lett 75: 2136–2139. DOI:10.1103/PhysRevLett.75.2136. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Matthaeus WH, Qin G, Bieber JW, Zank GP. 2003. Nonlinear collisionless perpendicular diffusion of charged particles. ApJL 590: L53–L56. DOI:10.1086/376613. [Google Scholar]
- Mazur JE, Mason GM, Dwyer JR, Giacalone J, Jokipii JR, Stone EC. 2000. Interplanetary magnetic field line mixing deduced from impulsive solar flare particles. ApJL 532: L79–L82. DOI:10.1086/312561. [NASA ADS] [CrossRef] [Google Scholar]
- Palmer ID. 1982. Transport coefficients of low-energy cosmic rays in interplanetary space. Rev Geophys Space Phy 20: 335–351. [Google Scholar]
- Parker EN. 1965. The passage of energetic charged particles through interplanetary space. Planet Space Sci 13: 9–49. DOI:10.1016/0032-0633(65)90131-5. [NASA ADS] [CrossRef] [Google Scholar]
- Pei C, Bieber JW, Breech B, Burger RA, Clem J, Matthaeus WH. 2010. Cosmic ray diffusion tensor throughout the heliosphere. J Geophys Res: Space Phys 115: A03103. DOI:10.1029/2009JA014705. [Google Scholar]
- Potgieter MS, Vos EE, Boezio M, De Simone N, Di Felice V, Formato V. 2014. Modulation of galactic protons in the heliosphere during the unusual solar minimum of 2006 to 2009. Sol Phys 289: 391–406. DOI:10.1007/s11207-013-0324-6. [Google Scholar]
- Qin G, Shalchi A. 2014. Pitch-angle dependent perpendicular diffusion of energetic particles interacting with magnetic turbulence. Appl Phys Res 6: 1–13. [Google Scholar]
- Reames DV. 1999. Particle acceleration at the Sun and in the heliosphere. Space Sci Rev 90: 413–491. DOI:10.1023/A:1005105831781. [NASA ADS] [CrossRef] [Google Scholar]
- Richardson IG, von Rosenvinge TT, Cane HV, Christian ER, Cohen CMS, Labrador AW, Leske RA, Mewaldt RA, Wiedenbeck ME, Stone EC. 2014. 25 MeV Proton events observed by the high energy telescopes on the STEREO A and B spacecraft and/or at earth during the first ∼ seven years of the STEREO mission. Sol Phys 289: 3059–3107. DOI:10.1007/s11207-014-0524-8. [NASA ADS] [CrossRef] [Google Scholar]
- Richter AK, Olbers DJ. 1974. Wave-trains in the solar wind. II: comments on the propagation of alfvén waves in the quiet interplanetary medium. Astrophys Space Sci 26: 95–105. DOI:10.1007/BF00642623. [NASA ADS] [CrossRef] [Google Scholar]
- Roelof EC. 1969. Propagation of solar cosmic rays in the interplanetary magnetic field. In H. Ögelman, JR. Wayland, eds. Lectures in High-Energy Astrophysics. 111 p. [Google Scholar]
- Ruffolo D, Matthaeus WH, Chuychai P. 2004. Separation of magnetic field lines in two-component turbulence. ApJ 614: 420–434. DOI:10.1086/423412. [CrossRef] [Google Scholar]
- Ruffolo D, Pianpanit T, Matthaeus WH, Chuychai P. 2012. Random ballistic interpretation of nonlinear guiding center theory. ApJL 747: L34. DOI:10.1088/2041-8205/747/2/L34. [NASA ADS] [CrossRef] [Google Scholar]
- Shalchi A. 2010. A unified particle diffusion theory for cross-field scattering: subdiffusion, recovery of diffusion, and diffusion in three-dimensional turbulence. ApJL 720: L127–L130. DOI:10.1088/2041-8205/720/2/L127. [NASA ADS] [CrossRef] [Google Scholar]
- Shalchi A, Büsching I, Lazarian A, Schlickeiser R. 2010. Perpendicular diffusion of cosmic rays for a goldreich-sridhar spectrum. ApJ 725: 2117–2127. DOI:10.1088/0004-637X/725/2/2117. [NASA ADS] [CrossRef] [Google Scholar]
- Skilling J. 1971. Cosmic rays in the galaxy: convection or diffusion ? ApJ 170: 265. DOI:10.1086/151210. [NASA ADS] [CrossRef] [Google Scholar]
- Strauss RD, Fichtner H. 2015. On aspects pertaining to the perpendicular diffusion of solar energetic particles. ApJ 801: 29, 10.1088/0004-637X/801/1/29. [Google Scholar]
- Strauss RDT, Effenberger F. 2017. A hitch-hiker's guide to stochastic differential equations. Space Sci Rev 1–42. DOI:10.1007/s11214-017-0351-y. http://dx.doi.org/10.1007/s11214-017-0351-y [Google Scholar]
- Strauss RDT, Dresing N, Engelbrecht NE. 2017. Perpendicular diffusion of solar energetic particles: model results and implications for electrons. ApJ 837: 43. DOI:10.3847/1538-4357/aa5df5. [Google Scholar]
- Thomas SR, Fazakerley AN, Wicks RT, Green L. 2017. Evaluating the skill of forecasts of the near-earth solar wind using a space weather monitor at L5. Space Weather J, submitted. [Google Scholar]
- Tooprakai P, Seripienlert A, Ruffolo D, Chuychai P, Matthaeus WH. 2016. Simulations of lateral transport and dropout structure of energetic particles from impulsive solar flares. ApJ 831: 195. DOI:10.3847/0004-637X/831/2/195. [CrossRef] [Google Scholar]
- Trichas M, Gibbs M, Harrison R, Green L, Eastwood J, Bentley B, et al. 2015. Carrington-L5: the UK/US operational space weather monitoring mission. Hipparchos 2: 25–31. [Google Scholar]
- Tu C-Y, Pu Z-Y, Wei F-S. 1984. The power spectrum of interplanetary alfvenic fluctuations derivation of the governing equation and its solution. J Geophys Res 89: 9695–9702. DOI:10.1029/JA089iA11p09695. [Google Scholar]
- Wanner W, Wibberenz G. 1993. A study of the propagation of solar energetic protons in the inner heliosphere. J Geophys Res 98: 3513–3528. DOI:10.1029/92JA02546. [NASA ADS] [CrossRef] [Google Scholar]
- Wiedenbeck ME, Mason GM, Cohen CMS, Nitta NV, Gómez-Herrero R, Haggerty DK. 2013. Observations of solar energetic particles from 3He-rich Events over a wide range of heliographic longitude. ApJ 762: 54. DOI:10.1088/0004-637X/762/1/54. [NASA ADS] [CrossRef] [Google Scholar]
- Zhang M, Jokipii JR, McKibben RB. 2003. Perpendicular transport of solar energetic particles in heliospheric magnetic fields. ApJ 595: 493–499. DOI:10.1086/377301. [Google Scholar]
- Zhang M, Qin G, Rassoul H. 2009. Propagation of solar energetic particles in three-dimensional interplanetary magnetic fields. ApJ 692: 109–132. DOI:10.1088/0004-637X/692/1/109. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.