J. Space Weather Space Clim.
Volume 8, 2018
Measurement, Specification and Forecasting of the Solar Energetic Particle Environment and GLEs
Article Number A06
Number of page(s) 10
Published online 06 February 2018
  • Crosby NB, Bothmer V, Facius R, Griessmeier J-M., Moussas X, Panasyuk M, Romanova N, Withers P. 2008. Interplanetary space weather and its planetary connection. Space Weather 6: S01003. [Google Scholar]
  • Crosby N, et al. 2015. SEPEM: a tool for statistical modeling the solar energetic particle environment. Space Weather 13: 406–426. [CrossRef] [Google Scholar]
  • Cucinotta FA, Hu S, Schwadron NA, Kozarev K, Townsend LW, Kim M-HY. 2010. Space radiation risk limits and Earth-Moon-Mars environmental models. Space Weather 8: S00E09. [CrossRef] [Google Scholar]
  • Dodd PE, Massengill LW. 2003. Basic mechanisms and modeling of single-event upset in digital microelectronics. IEEE Trans Nucl Sci 50: 583–602. [CrossRef] [Google Scholar]
  • Feynman J, Armstrong TP, Dao-Gibner L, Silverman S. 1990. New interplanetary proton fluence model. J Spacecr Rocket 27: 403. [Google Scholar]
  • Feynman J, Spitale G, Wang J, Gabriel SB. 1993. Interplanetary proton fluence model: JPL 1991. J Geophys Res 98: A8. [Google Scholar]
  • Ginet GP, O'Brien TP, Huston SL, Johnston WR, Guild TB, et al. 2013. AE9, AP9 and SPM: new models for specifying the trapped energetic particle and space plasma environment. Space Sci Rev 179: 579–615. [CrossRef] [Google Scholar]
  • Heynderickx D, Sandberg I, Jiggens P. 2017. SEPEM reference data set (RDS) v2.0. [Google Scholar]
  • ISO-15390. 2004. Space environment (Natural and artificial) − galactic cosmic ray model. Ref no. ISO 15390:2004(E). [Google Scholar]
  • Jiggens PTA, Gabriel SB. 2009. Time distributions of solar energetic particle events: are SEPEs really random? J Geophys Res 114: A10105. [CrossRef] [Google Scholar]
  • Jiggens PTA, Gabriel SB, Heynderickx D, Crosby N, Glover A, Hilgers A. 2012. ESA SEPEM project: peak flux and fluence model. IEEE Trans Nucl Sci 59: 1066–1077. [CrossRef] [Google Scholar]
  • Lei F, Truscott RR, Dyer CS, Quaghebeur B, Heynderickx D, Nieminen R, Evans H, Daly E. 2002. MULASSIS: a Geant4-based multilayered shielding simulation tool. IEEE Trans Nucl Sci 49: 2788–2793. [CrossRef] [Google Scholar]
  • Matthiä D, Berger T, Mrigakshi AI, Reitz G. 2013. A ready-to-use galactic cosmic ray model. Adv Space Res 51: 329–338. [CrossRef] [Google Scholar]
  • Nymmik RA. 1999. Probabilistic model for fluences and peak fluxes of solar energetic particles. Rad Meas 30: 287–296. [Google Scholar]
  • O'Neill PM. 2006. Badhwar-O'Neill galactic cosmic ray model update based on advanced composition explorer (ACE) energy spectra from 1997 to present. Adv Space Res 37: 1727–1733. [NASA ADS] [CrossRef] [Google Scholar]
  • Rodriguez JV, Sandberg I, Mewaldt RA, Daglis IA, Jiggens P. 2017. Validation of the effect of cross-calibrated GOES solar proton effective energies on derived integral fluxes by comparison with STEREO observations. Space Weather 15: 290–309. [CrossRef] [Google Scholar]
  • Sandberg I, Jiggens P, Heynderickx D, Daglis IA. 2014. Cross calibration of NOAA GOES solar proton detectors using corrected NASA IMP-8/GME data. Geophys Res Lett 41: 4435–4441. [CrossRef] [Google Scholar]
  • Seltzer SM, SHIELDOSE: a computer code for space-shielding radiation dose calculations, National Bureau of Standards, NBS Technical Note 1116, US Government Printing Office, Washington, 407 DC, 1980 [Google Scholar]
  • Stassinopoulos EG, King JH. 1974. Empirical solar proton model for orbiting spacecraft applications. IEEE Trans Aerosp Electron Syst 10: 442–450. [CrossRef] [Google Scholar]
  • Vainio R, et al. 2009. Dynamics of the earth's particle radiation environment. Space Sci Rev 147: 187–231. [CrossRef] [Google Scholar]
  • Xapsos MA, Summers GP, Burke EA. 1998. Probability model for peak fluxes of solar proton events. IEEE Trans Nucl Sci 45: 2948–2953. [Google Scholar]
  • Xapsos MA, Summers GP, Barth JL, Stassinopoulos EG, Burke EA. 1999. Probability model for worst case solar proton event fluences. IEEE Trans Nucl Sci 46: 1481–1485. [Google Scholar]
  • Xapsos MA, Stauffer C, Barth JL, Burke EA. 2006. Solar particle events and self-organized criticality: are deterministic predictions of events possible? IEEE Trans Nucl Sci 53: 1839–1843. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.