Open Access
Issue |
J. Space Weather Space Clim.
Volume 8, 2018
Developing New Space Weather Tools: Transitioning fundamental science to operational prediction systems
|
|
---|---|---|
Article Number | A35 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/swsc/2018020 | |
Published online | 26 June 2018 |
- Allianz, Global Risk Dialogue Report, Allianz, 2009. [Google Scholar]
- Altschuler MD, Newkirk G. 1969. Magnetic fields and the structure of the solar corona. Sol Phys 9: 131–149. DOI:10.1007/bf00145734. [NASA ADS] [CrossRef] [Google Scholar]
- Arge CN. 2003. Improved method for specifying solar wind speed near the Sun. In: AIP Conference Proceedings. AIP Publishing, DOI:10.1063/1.1618574. [Google Scholar]
- Arge CN, Pizzo VJ. 2000. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res. Space Phys. 105: 10465–10479, DOI:10.1029/1999ja000262. [CrossRef] [Google Scholar]
- Cannon P, Angling M, Curry C, Dyer D, Edwards R, et al. 2013. Extreme space weather: impacts on engineered systems and infrastructure. R Acad Eng. Rep http://www.raeng.org.uk/publications/reports/space-weather-full-report. [Google Scholar]
- Detman T, Smith Z, Dryer M, Fry CD, Arge CN, Pizzo V. 2006. A hybrid heliospheric modeling system: background solar wind. J Geophys Res 111: DOI:10.1029/2005ja011430. [Google Scholar]
- Eastwood JP, Biffis E, Hapgood MA, Green L, Bisi MM, Bentley RD, Wicks R, McKinnell L-A, Gibbs M, Burnett C. 2017. The economic impact of space weather: where do we stand ? Risk Anal 37: 206–218, DOI:10.1111/risa.12765. [CrossRef] [Google Scholar]
- Green L, Baker D. 2015. Coronal mass ejections: a driver of severe space weather. Weather 70: 31–35, DOI:10.1002/wea.2437. [CrossRef] [Google Scholar]
- Gressl C, Veronig AM, Temmer M, Odstrčil D, Linker JA, Mikić Z, Riley P. 2013. Comparative study of mhd modeling of the background solar wind. Sol Phys 289: 1783–1801, DOI:10.1007/s11207-013-0421-6. [Google Scholar]
- Hapgood MA. 2011. Towards a scientific understanding of the risk from extreme space weather. Adv Space Res 47: 2059–2072, DOI:10.1016/j.asr.2010.02.007. [CrossRef] [Google Scholar]
- Hayashi K. 2003. MHD tomography using interplanetary scintillation measurement. J Geophys Research 108: DOI:10.1029/2002ja009567. [Google Scholar]
- Hayashi K. 2012. An MHD simulation model of time-dependent co-rotating solar wind. J Geophys Res (Space Phys) 117: A08105, DOI:10.1029/2011JA017490. [Google Scholar]
- Hayashi K. 2013. An MHD simulation model of time-dependent global solar corona with temporally varying solar-surface magnetic field maps. J Geophys Res (Space Phys) 118: 6889–6906, DOI:10.1002/2013JA018991. [CrossRef] [Google Scholar]
- Hayashi K, Hoeksema JT, Liu Y, Bobra MG, Sun XD, Norton AA. 2015. The helioseismic and magnetic imager (HMI) vector magnetic field pipeline: magnetohydrodynamics simulation module for the global solar corona. Sol Phys 290: 1507–1529, DOI:10.1007/s11207-015-0686-z. [CrossRef] [Google Scholar]
- Isavnin A. 2016. FRiED: a novel three-dimensional model of coronal mass ejections. Astrophys J 833: 267, DOI:10.3847/1538-4357/833/2/267. [NASA ADS] [CrossRef] [Google Scholar]
- Isavnin A, Vourlidas A, Kilpua EKJ. 2014. Three-dimensional evolution of flux-rope CMEs and Its relation to the local orientation of the heliospheric current sheet. Sol Phys 289: 2141–2156, DOI:10.1007/s11207-013-0468-4. [CrossRef] [Google Scholar]
- Jian LK, MacNeice PJ, Mays ML, Taktakishvili A, Odstrcil D, Jackson B, Yu H-S, Riley P, Sokolov IV. 2016. Validation for global solar wind prediction using Ulysses comparison: multiple coronal and heliospheric models installed at the community coordinated modeling center. Space Weather 14: 592–611, DOI:10.1002/2016sw001435. [CrossRef] [Google Scholar]
- Jian LK, MacNeice PJ, Taktakishvili A, Odstrcil D, Jackson B, Yu H-S, Riley P, Sokolov IV, Evans RM. 2015. Validation for solar wind prediction at Earth: comparison of coronal and heliospheric models installed at the CCMC. Space Weather 13: 316–338, DOI:10.1002/2015sw001174. [CrossRef] [Google Scholar]
- Kataoka R, Ebisuzaki T, Kusano K, Shiota D, Inoue S, Yamamoto TT, Tokumaru M. 2009. Three-dimensional MHD modeling of the solar wind structures associated with 13 December 2006 coronal mass ejection. J Geophys Res (Space Phys) 114: A10102, DOI:10.1029/2009JA014167. [Google Scholar]
- Kay C, Gopalswamy N, Reinard A, Opher M. 2017. Predicting the Magnetic Field of Earth-impacting CMEs. Astrophys J 835: 117, DOI:10.3847/1538-4357/835/2/117. [CrossRef] [Google Scholar]
- Kilpua EKJ, Pomoell J, Vourlidas A, Vainio R, Luhmann J, Li Y, Schroeder P, Galvin AB, Simunac K. 2009. STEREO observations of interplanetary coronal mass ejections and prominence deflection during solar minimum period. Ann Geophys 27: 4491–4503, DOI:10.5194/angeo-27-4491-2009. [CrossRef] [Google Scholar]
- Kilpua EKJ, Lumme E, Andreeova K, Isavnin A, Koskinen HEJ. 2015. Properties and drivers of fast interplanetary shocks near the orbit of the Earth (1995–2013). J Geophys Res Space Phys 120: 4112–4125, DOI:10.1002/2015ja021138. [Google Scholar]
- Kissmann R, Pomoell J. 2012. A semidiscrete finite volume constrained transport method on orthogonal curvilinear grids. SIAM J Sci Comput 34: A763–A791, DOI:10.1137/110834329. [CrossRef] [Google Scholar]
- Lavraud B, Rouillard A. 2013. Properties and processes that influence CME geo-effectiveness. Proc Int Astronom Union 8: 273–284, DOI:10.1017/s1743921313011095. [CrossRef] [Google Scholar]
- Linker JA, Caplan RM, Downs C, Riley P, Mikic Z, et al. 2017. The open flux problem. Astrophys J 848: 70, DOI:10.3847/1538-4357/aa8a70. [Google Scholar]
- Lionello R, Downs C, Linker JA, Trk T, Riley P, Mikić Z. 2013. Magnetohydrodynamic simulations of interplanetary coronal mass ejections. Astrophys J 777: 76, DOI:10.1088/0004-637x/777/1/76. [Google Scholar]
- Mays ML, Taktakishvili A, Pulkkinen A, MacNeice PJ, Rastter L, et al. 2015. Ensemble modeling of CMEs Using the WSA–ENLIL+Cone Model. Sol Phys 290: 1775–1814, DOI:10.1007/s11207-015-0692-1. [NASA ADS] [CrossRef] [Google Scholar]
- McGregor SL, Hughes WJ, Arge CN, Owens MJ. 2008. Analysis of the magnetic field discontinuity at the potential field source surface and Schatten Current Sheet interface in the Wang–Sheeley–Arge model. J Geophys Res 113: DOI:10.1029/2007ja012330. [Google Scholar]
- McGregor SL, Hughes WJ, Arge CN, Owens MJ, Odstrcil D. 2011. The distribution of solar wind speeds during solar minimum: calibration for numerical solar wind modeling constraints on the source of the slow solar wind. J Geophys Res Space Phys 116: DOI:10.1029/2010ja015881. [Google Scholar]
- Merkin VG, Lyon JG, Lario D, Arge CN, Henney CJ. 2016. Time-dependent magnetohydrodynamic simulations of the inner heliosphere. J Geophys Res (Space Phys) 121: 2866–2890, DOI:10.1002/2015JA022200. [CrossRef] [Google Scholar]
- Odstrcil D, Pizzo VJ. 1999. Distortion of the interplanetary magnetic field by three-dimensional propagation of coronal mass ejections in a structured solar wind. J Geophys Res Space Phys 104: 28225–28239, DOI:10.1029/1999ja900319. [NASA ADS] [CrossRef] [Google Scholar]
- Odstrčil D, Pizzo VJ. 1999. Three-dimensional propagation of CMEs in a structured solar wind flow: 1. CME launched within the streamer belt. J Geophys Res 104, 483–492, DOI:10.1029/1998JA900019. [CrossRef] [Google Scholar]
- Odstrcil D, Riley P, Zhao XP. 2004. Numerical simulation of the 12 May 1997 interplanetary CME event. J Geophys Res Space Phys 109: DOI:10.1029/2003ja010135. [Google Scholar]
- Owens MJ, Spence HE, McGregor S, Hughes WJ, Quinn JM, Arge CN, Riley P, Linker J, Odstrcil D. 2008. Metrics for solar wind prediction models: comparison of empirical hybrid, and physics-based schemes with 8 years of L1 observations. Space Weather 6: DOI:10.1029/2007sw000380. [Google Scholar]
- Parsons A, Biesecker D, Odstrcil D, Millward G, Hill S, Pizzo V. 2011. Wang–Sheeley–Arge–Enlil Cone model transitions to operations. Space Weather 9: DOI:10.1029/2011sw000663. [Google Scholar]
- Pomoell J, Vainio R. 2012. Influence of solar wind heating formulations on the properties of shocks in the corona. Astrophys J 745: 151, DOI:10.1088/0004-637x/745/2/151. [CrossRef] [Google Scholar]
- Press NA, Severe space weather events-understanding societal and economic impacts, National Academies Press, 2008. DOI:10.17226/12507. [Google Scholar]
- Richardson IG, Cliver EW, Cane HV. 2001. Sources of geomagnetic storms for solar minimum and maximum conditions during 1972–2000. Res Lett 28: 2569–2572, DOI:10.1029/2001GL013052. [Google Scholar]
- Riley P. 2012. On the probability of occurrence of extreme space weather events. Space Weather 10: S02012, DOI:10.1029/2011SW000734. [NASA ADS] [CrossRef] [Google Scholar]
- Riley P, Linker JA, Mikić Z. 2001. An empirically-driven global MHD model of the solar corona and inner heliosphere. J Geophys Res 106: 15889–15901, DOI:10.1029/2000ja000121. [Google Scholar]
- Riley P, Linker JA, Arge CN. 2015. On the role played by magnetic expansion factor in the prediction of solar wind speed. Space Weather 13: 154–169, DOI:10.1002/2014sw001144. [NASA ADS] [CrossRef] [Google Scholar]
- Robbrecht E, Berghmans D, der Linden RAMV. 2009. Automated Lasco CME Catalog For solar cycle 23: are CMEs scale invariant ? Astrophys J 691: 1222–1234, DOI:10.1088/0004-637x/691/2/1222. [CrossRef] [Google Scholar]
- Savani NP, Vourlidas A, Szabo A, Mays ML, Richardson IG, Thompson BJ, Pulkkinen A, Evans R, Nieves-Chinchilla T. 2015. Predicting the magnetic vectors within coronal mass ejections arriving at Earth: 1. Initial architecture. Space Weather 13: 374–385, DOI:10.1002/2015SW001171. [NASA ADS] [CrossRef] [Google Scholar]
- Schatten KH, Wilcox JM, Ness NF. 1969. A model of interplanetary and coronal magnetic fields. Sol Phys 6: 442–455, DOI:10.1007/bf00146478. [NASA ADS] [CrossRef] [Google Scholar]
- Schrijver CJ, Dobbins R, Murtagh W, Petrinec SM. 2014. Assessing the impact of space weather on the electric power grid based on insurance claims for industrial electrical equipment. Space Weather 12: 487–498, DOI:10.1002/2014SW001066. [CrossRef] [Google Scholar]
- Schrijver CJ, Kauristie K, Aylward AD, Denardini CM, Gibson SE, et al. 2015. Understanding space weather to shield society: a global road map for 2015–2025 commissioned by COSPAR and ILWS. Adv Space Res 55: 2745–2807, DOI:10.1016/j.asr.2015.03.023. [NASA ADS] [CrossRef] [Google Scholar]
- Shiota D, Kataoka R. 2016. Magnetohydrodynamic simulation of interplanetary propagation of multiple coronal mass ejections with internal magnetic flux rope (SUSANOO-CME). Space Weather 14: 56–75, DOI:10.1002/2015SW001308. [NASA ADS] [CrossRef] [Google Scholar]
- Shiota D, Kataoka R, Miyoshi Y, Hara T, Tao C, Masunaga K, Futaana Y, Terada N. 2014. Inner heliosphere MHD modeling system applicable to space weather forecasting for the other planets. Space Weather 12: 187–204, DOI:10.1002/2013sw000989. [CrossRef] [Google Scholar]
- Siscoe G, Space weather forecasting historically viewed through the lens of meteorology, Springer Berlin Heidelberg, 2007. [Google Scholar]
- Thernisien A, Vourlidas A, Howard RA. 2009. Forward modeling of coronal mass ejections using STEREO/SECCHI data. Sol Phys 256: 111–130, DOI:10.1007/s11207-009-9346-5. [CrossRef] [Google Scholar]
- van der Holst B, Manchester WB, Frazin RA, Vásquez AM, Tóth G, Gombosi TI. 2010. A data-driven two-temperature solar wind model with alfvén waves. Astrophys J 725: 1373–1383, DOI:10.1088/0004-637x/725/1/1373. [NASA ADS] [CrossRef] [Google Scholar]
- Wang Y-M, Sheeley NRJ. 1990. Solar wind speed and coronal flux-tube expansion. Astrophys J 355: 726, DOI:10.1086/168805. [NASA ADS] [CrossRef] [Google Scholar]
- Wiengarten T, Kleimann J, Fichtner H, Khl P, Kopp A, Heber B, Kissmann R. 2014. Cosmic ray transport in heliospheric magnetic structures. I. modeling background solar wind using the cronos magnetohydrodynamic code. Astrophys J 788: 80, DOI:10.1088/0004-637x/788/1/80. [NASA ADS] [CrossRef] [Google Scholar]
- Zhao X, Dryer M. 2014. Current status of CME/shock arrival time prediction. Space Weather 12: 448–469, 2014SW001060, DOI:10.1002/2014SW001060. [CrossRef] [Google Scholar]
- Zheng Y. 2013. Improving CME forecasting capability: an urgent need. Space Weather 11: 641–642, DOI:10.1002/2013sw001004. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.