Open Access
Issue
J. Space Weather Space Clim.
Volume 8, 2018
Article Number A60
Number of page(s) 9
DOI https://doi.org/10.1051/swsc/2018046
Published online 21 December 2018
  • Beggan CD. 2015. Sensitivity of geomagnetically induced currents to varying auroral electrojet and conductivity models. Earth Planets Space 67: 162. DOI: 10.1186/s40623-014-0168-9. [CrossRef] [Google Scholar]
  • Biro O, Preis K. 1989. On the use of magnetic vector potential in the finite element analysis of three-dimensional eddy currents. IEEE Trans Magn 24(4): 3145–3159. [CrossRef] [Google Scholar]
  • Bolduc L. 2002. GIC observations and studies in the Hydro-Quebec power system. J Atm Solar-Terr Phys 64(16): 1793–1802. [Google Scholar]
  • Boteler DH, Pirjola RJ, Nevanlinna H. 1998. The effects of geomagnetic disturbances on electrical systems at the earth’s surface. Adv Space Res 22(1): 17–27. [CrossRef] [Google Scholar]
  • Butala MD, Kazerooni M, Makela JJ, Kamalabadi F, Gannon J, Zhu H, Overbye TJ. 2017. Modeling geomagnetically induced currents from magnetometer measurements: Spatial scale assessed with reference measurements. Space Weather 15(10): 1357–1372. [CrossRef] [Google Scholar]
  • Divett T, Ingham M, Beggan C, Richardson G, Rodger C, Thomson A, Dalzell M. 2017. Modeling geo-electric fields and geomagnetically induced currents (GIC) around New Zealand to explore GIC in the South Island’s electrical transmission network. Space Weather 15: 1396–1412. [CrossRef] [Google Scholar]
  • Dong B, Danskin DW, Pirjola RJ, Boteler DH, Wang ZZ. 2013. Evaluating the applicability of the finite element method for modelling of geoelectric fields. Ann Geophys 31(10): 1689–1698. [CrossRef] [Google Scholar]
  • Dong B, Wang Z, Pirjola R, Liu C, Liu L. 2015. An approach to model earth conductivity structures with lateral changes for calculating induced currents and geoelectric fields during geomagnetic disturbances. Math Probl Eng 2015: 761964. DOI: 10.1155/2015/761964. [Google Scholar]
  • Fischer G. 1979. Electromagnetic induction effects at an ocean coast. In: Presented at Proceedings of the IEEE, Helsinki, Finland [Online]. Available: http://ieeexplore.ieee.org/document/1455657/ [Google Scholar]
  • Fujita S, Fujii I, Endo A, Tominaga H. 2018. Numerical modeling of spatial profiles of geomagnetically induced electric field intensity in and around Japan. Tech Rep Kakioka Magn Observ 14: 35–50. [Google Scholar]
  • Gannon JL, Birchfield AB, Shetye KS, Overbye TJ. 2017. A Comparison of Peak Electric Fields and GICs in the Pacific Northwest Using 1-D and 3-D Conductivity. Space Weather 15(11): 1535–1547. [CrossRef] [Google Scholar]
  • Gaunt CT, Coetzee G. 2007. Transformer failures in regions incorrectly considered to have low GIC-risk. In: Presented at Power Tech Conference, IEEE, Lausanne [Online] Available: http://ieeexplore.ieee.org/document/4538419/ [Google Scholar]
  • Gilbert JL. 2005. Modeling the effect of the ocean-land interface on induced electric fields during geomagnetic storms. Space Weather 3(4): S04A03. [CrossRef] [Google Scholar]
  • Gilbert JL. 2015. Simplified techniques for treating the ocean–land interface for geomagnetically induced electric fields. IEEE Trans Electromagn Compat 57(4): 688–692. [CrossRef] [Google Scholar]
  • Girgis R, Vedante K. 2012. Effects of GIC on power transformers and power systems. In: Presented at Transmission and Distribution Conference and Exposition (T&D), IEEE PES [Online]. Available: http://ieeexplore.ieee.org/document/6281595/. [Google Scholar]
  • Horton R, Boteler DH, Overbye TJ, Pirjola R, Duncan RC. 2012. A test case for the calculation of geomagnetically induced currents. IEEE Trans Power Deliv 27(4): 2368–2373. [CrossRef] [Google Scholar]
  • Keding Z. 1994. Engineering electromagnetic field theory of numerical calculation, Higher Education Press, Beijing, China. [Google Scholar]
  • Kappenman JG. 1996. Geomagnetic storms and their impact on power systems. IEEE Power Eng Rev 16(5): 5–8. [CrossRef] [Google Scholar]
  • Kappenman JG. 2004. The evolving vulnerability of electric power grids. Space Weather 2(1): 257–286. [Google Scholar]
  • Kappenman JG, Albertson VD. 1990. Bracing for the geomagnetic storms. IEEE Spectr 27(3): 27–33. [CrossRef] [Google Scholar]
  • Li WL, Lin SD, Duan HJ, Zhao WC, Sun GQ. 1986. Study and discussion of deep electrical structure in eastern Guangdong. South China J Seismol 6(4): 1–7. [Google Scholar]
  • Liu Y, Xu YX, Zhang SY, Yang WC, Yang B. 2013. Lithospheric electrical characteristics in South China and its geodynamic implication. Chin J Geophys 56(12): 4234–4244 (in Chinese). [Google Scholar]
  • Liu CM, Liu LG, Pirjola R. 2009a. Calculation of geomagnetically induced currents in mid- to low-latitude power grids based on the plane wave method: A preliminary case study. Space Weather 7(4): 9–14. [Google Scholar]
  • Liu CM, Liu LG, Pirjola R. 2009b. Geomagnetically induced currents in the high-voltage power grid in China. IEEE Trans Power Deliv 24(4): 2368–2374. [Google Scholar]
  • Liu LG, Yuan L, Wang ZD, Zheng K, Feng XS. 2011. Study on the impact of magnetic storm on security of transformers in coastal nuclear plants. China Saf Sci J 25(5): 104–108. [Google Scholar]
  • Liu L, Ge X, Zong W, Zhou Y, Liu M. 2016. Analysis of the monitoring data of geomagnetic storm interference in the electrification system of a high-speed railway. Space Weather 14(10): 754–763. [CrossRef] [Google Scholar]
  • Marti L, Yiu C, Rezaei-Zare A, Boteler D. 2014. Simulation of geomagnetically induced currents with piecewise layered-earth models. IEEE Trans Power Deliv 29(4): 1886–1893. [CrossRef] [Google Scholar]
  • Molinski TS. 2002. Why utilities respect geomagnetically induced currents. J Atmos Solar-Terr Phys 64: 1765–1778. [Google Scholar]
  • Ngwira CM, Pulkkinen A, McKinnell L-A, Cilliers PJ. 2008. Improved modeling of geomagnetically induced currents in the South African power network. Space Weather 6(11): S11004. [CrossRef] [Google Scholar]
  • Ngwira CM, McKinnell L-A, Chilliers PJ, Viljanen A, Pirjola R. 2009. Limitations of the modeling of geomagnetically induced currents in the South African network. Space Weather 7(10): S10002. [CrossRef] [Google Scholar]
  • Olsen N, Kuvshinov A. 2004. Modeling the ocean effect of geomagnetic storms. Earth Planets Space 56(5): 525–530. [CrossRef] [Google Scholar]
  • Pirjola R. 1985. On currents induced in power transmission systems during geomagnetic variations. IEEE Trans Power Appar Syst PER-5(10): 2825–2831. [CrossRef] [Google Scholar]
  • Pirjola R. 2000. Geomagnetically induced currents during magnetic storms. IEEE Trans Plasma Sci 28(6): 1867–1872. [CrossRef] [Google Scholar]
  • Pirjola R. 2002. Review on the calculation of surface electric and magnetic fields and of geomagnetically induced currents in ground-based technological systems. Surv Geophys 23(1): 71–90. [CrossRef] [Google Scholar]
  • Pirjola R. 2005. Effects of space weather on high-latitude ground systems. Adv Space Res 36(12): 2231–2240. [CrossRef] [Google Scholar]
  • Pirjola R. 2013. Practical model applicable to investigating the coast effect of the geoelectric field in connection with studies of geomagnetically induced currents. Adv Appl Phys 1(1): 9–28. [CrossRef] [Google Scholar]
  • Pulkkinen A, Kataoka R, Watari S, Ichiki M. 2010. Modeling geomagnetically induced currents in Hokkaido, Japan. Adv Space Res 46(9): 1087–1093. [CrossRef] [Google Scholar]
  • Sheng JN. 1991. Numerical analysis of engineering electromagnetic field, Xi’an Jiao Tong University Press, Xi’an, China. [Google Scholar]
  • Wang ZZ. 2011. Concise numerical calculation of electromagnetic field, China Machine Press, Beijing, China. [Google Scholar]
  • Wang ZZ, Quan YS, Lu BX. 2011. Engineering electromagnetic fields, Tsinghua University Press, Beijing, China. p. 143–145. [Google Scholar]
  • Wang ZZ, Dong B, Liu CM. 2015. Three dimensional earth conductivity structure modelling in north China and calculation of geoelectromagnetic fields during geomagnetic disturbances based on finite element method. Trans China Electrotech Soc 30(3): 61–66. [Google Scholar]
  • Wang L, Lewis AM, Ogawa Y, Jones WV, Costelloe MT. 2016. Modelling geomagnetic induction hazards using a 3-D electrical conductivity model of Australia. Space Weather 14. DOI: 10.1002/2016SW001436. [Google Scholar]
  • Watari S, Kunitake M, Kitamura K, Hori T, Kikuchi T, et al. 2009. Measurements of geomagnetically induced current in a power grid in Hokkaido, Japan. Space Weather 7(3): S03002. DOI: 10.1029/2008SW000417. [Google Scholar]
  • Wik M, Viljanen A, Pirjola R, Pulkkinen A, Wintoft P, Lundstedt H. 2008. Calculation of geomagnetically induced currents in the 400 kV power grid in southern Sweden. Space Weather 6(7): S07005. [Google Scholar]
  • Wenlu L, Shundao L, Huiji D. 1987. Surveying on electric nature structure of the crust and upper mantle along Shenzhen-Zengcheng, Guangdong Province. South China J Seismol 7(1): 16–21. [Google Scholar]
  • Xuecheng Y. 1996. Atlas of geophysics in China, Geological Publishing House, Beijing, China. p. 54–55. [Google Scholar]
  • Yang RG. 2002. Electromagnetic theorem, theory and its application, Xi’nan Jiao Tong University Press, Chengdu, China. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.