Issue
J. Space Weather Space Clim.
Volume 8, 2018
Planetary Space Weather
Article Number A57
Number of page(s) 14
DOI https://doi.org/10.1051/swsc/2018045
Published online 07 December 2018
  • André N, Grande M, Achilleos N, Barthélémy M, Bouchemit M, et al. 2018. Virtual planetary space weather services offered by the Europlanet H2020 research infrastructure. Planet Space Sci 150: 50–59. [NASA ADS] [CrossRef] [Google Scholar]
  • Andrews DJ, et al. 2016. Plasma observations during the Mars atmospheric “plume” event on March–April 2012. J Geophys Res Space Phys 121: 3139–3154. [CrossRef] [Google Scholar]
  • Andersson L, Weber TD, Malaspina D, Crary F, Ergun RE, et al. 2015. Dust observations at orbital altitudes surrounding Mars. Science 350: aad0398. [CrossRef] [Google Scholar]
  • Barabash S, Lundin R, Andersson H, Brinkfeldt K, Grigoriev A, et al. 2006. The Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) for the Mars express mission. Space Sci Rev 126: 113–164. [NASA ADS] [CrossRef] [Google Scholar]
  • Clancy RT, Wolff MJ, Whitney BA, Cantor BA, Smith MD. 2007. Mars equatorial mesospheric clouds: Global occurrence and physical properties from Mars Global Surveyor Thermal Emission Spectrometer and Mars Orbiter Camera limb observations. J Geophys Res 112(E4): E04004. [CrossRef] [Google Scholar]
  • Clancy RT, Montmessin FB, Benson J, Daerden F, Colaprete A, Wolff MJ. 2017. Mars clouds. In: The atmosphere and climate of Mars, Haberle RM, (Ed.), Cambridge University Press. [Google Scholar]
  • Daubar IJ, McEwen AS, Byrne S, Kennedy MR, Ivanov B. 2013. The current Martian cratering rate. Icarus 225: 506–516. [NASA ADS] [CrossRef] [Google Scholar]
  • Daubar IJ, Atwood-Stone C, Byrne S, McEwen AS, Russell PS, et al. 2014. The morphology of fresh craters on Mars and the Moon. J Geophys Res Planet 119: 2260–2639. [CrossRef] [Google Scholar]
  • de Pater I, Fletcher LN, Pérez-Hoyos S, Hammel HB, Orton GS, Wong MH, Luszcz-Cook S, Sánchez-Lavega A, Boslough M. 2010. A multi-wavelength study of the 2009 impact on Jupiter: Comparison of high resolution images from Gemini, Keck and HST. Icarus 210: 722–741. [NASA ADS] [CrossRef] [Google Scholar]
  • Duru F, et al. 2017. Response of the Martian ionosphere to solar activity including SEPs and ICMEs in a two-week period starting on 25 February 2015. Planet Space Sci 145: 28–37. [CrossRef] [Google Scholar]
  • Erard S, Cecconi B, Le Sidaner P, Rossi AP, et al. 2018. VESPA: A community-driven virtual observatory in Planetary Science. Planet Space Sci 150: 65–85. [CrossRef] [Google Scholar]
  • Fast KE, Kostiuk T, Livengood TA, Hewagama T, Annen J. 2011. Modification of Jupiter’s stratosphere three weeks after the 2009 impact. Icarus 213: 195–200. [CrossRef] [Google Scholar]
  • Fletcher LN, Orton GS, de Pater I, Mousis O. 2010. Jupiter’s stratospheric hydrocarbons and temperatures after the July 2009 impact from VLT infrared spectroscopy. A&A 524(A46): 14. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Fletcher LN, Orton GS, de Pater I, Edwards ML, Yanamandra-Fisher PA, Hammel HB, Lisse C, Fisher BM. 2011. The aftermath of the July 2009 impact on Jupiter: Ammonia, temperatures and particulates from Gemini thermal infrared spectroscopy. Icarus 211: 568–586. [NASA ADS] [CrossRef] [Google Scholar]
  • Gurnett DA, Kirchner DL, Huff RL, Morgan DD, Persoon AM, et al. 2005. Radar soundings of the ionosphere of Mars. Science 310: 1929–1933. [CrossRef] [Google Scholar]
  • Hammel HB, Beebe RF, Ingersoll AP, Orton GS, Mills JR, et al. 1995. HST imaging of atmospheric phenomena created by the impact of Comet Shoemaker-Levy 9. Science 267: 1288–1296. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Hammel HB, Wong MH, Clarke JT, de Pater I, Fletcher LN, et al. 2010. Jupiter after the 2009 impact: Hubble space telescope imaging of the impact generated debris and its temporal evolution. Astrophys J Lett 715: L150–L154. [NASA ADS] [CrossRef] [Google Scholar]
  • Harrington J, de Pater I, Brecht SH, Drake D, Meadows V, Zahnle K, Nicholson PD. 2004. Lessons from Shoemaker-Levy 9 about Jupiter and planetary impacts. In: Jupiter: The planet, satellites and magnetosphere, Bagenal F, Downling TE, McKinnon WB (Eds.), Cambridge University Press, Cambridge, United Kingdom, pp. 159–1184. [Google Scholar]
  • Hedman MM, Burns JA, Evans MW, Tiscareno MS, Porco CC. 2011. Saturn’s curiously corrugated C ring. Science 332: 708. [CrossRef] [Google Scholar]
  • Hueso R, Legarreta J, Pérez-Hoyos S, Rojas JF, Sánchez-Lavega A, Morgado A. 2010a. The International Outer Planet Watch atmospheres node database of giant-planet images. Planet Space Sci 58: 1152–1159. [NASA ADS] [CrossRef] [Google Scholar]
  • Hueso R, Wesley A, Go C, Pérez-Hoyos S, Wong MH, Fletcher LN, Sánchez-Lavega A, et al. 2010b. First Earth-based detection of a Superbolide on Jupiter. Astrophys J Lett 721(2): L129. [NASA ADS] [CrossRef] [Google Scholar]
  • Hueso R, Pérez-Hoyos S, Sánchez-Lavega A, Wesley A, Hall G, Go C, et al. 2013. Impact flux on Jupiter: From superbolides to large-scale collisions. A&A 560: A55. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Hueso R, Juaristi J, Legarreta J, Sánchez-Lavega A, Rojas JF, Erard S, Cecconi B, Le Sidaner P. 2018a. The planetary virtual observatory and laboratory (PVOL) and its integration into the virtual European solar and planetary access (VESPA). Planet Space Sci 150: 22–35. [NASA ADS] [CrossRef] [Google Scholar]
  • Hueso R, Delcroix M, Sánchez-Lavega A, et al. 2018b. Small impacts on the Giant Planet Jupiter. A&A 617: A68. [CrossRef] [EDP Sciences] [Google Scholar]
  • Jaquin F, Gierasch P, Kahn R. 1986. The vertical structure of limb hazes in the Martian atmosphere. Icarus 68: 442–461. [CrossRef] [Google Scholar]
  • Kraaikamp E. 2016. Sky and telescope, vol. 132, Sky publishing Corporation, Cambridge, USA, p. 68. [Google Scholar]
  • Law NM, Mackay CD, Baldwin JE. 2006. Lucky imaging: high angular resolution imaging in the visible from the ground. A&A 446: 739–745. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Madiedo JM, Ortiz JL, Morales N, Cabrera-Caño J. 2014. A large lunar impact blast on 2013 September 11. MNRAS 439: 2364–2369. [NASA ADS] [CrossRef] [Google Scholar]
  • Madiedo JM, Ortiz JL, Morales N, Cabrera-Caño J. 2015. MIDAS: Software for the detection and analysis of lunar impact flashes. Planet Space Sci 111: 105–115. [NASA ADS] [CrossRef] [Google Scholar]
  • Mendikoa I, Sánchez-Lavega A, Pérez-Hoyos S, Hueso R, Rojas JF, Aceituno J, Aceituno F, Murga G, de Bilbao L, García-Melendo E. 2014. PlanetCam UPV/EHU: A two channel lucky imaging camera for Solar System studies in the spectral range 0.38–1.7 microns. Publ Astron Soc Pac 128: 035002 (22 p.). [NASA ADS] [CrossRef] [Google Scholar]
  • Minami M. 2003. Communication in Mars observations, vol. 283. http://www.kwasan.kyoto-u.ac.jp/~cmo/cmomn2/283OAA/index.htm. [Google Scholar]
  • Mitchell DL, Lillis RJ, Lin RP, Connerney JEP, Acuña MH. 2007. A global map of Mars’ crustal magnetic field based on electron reflectometry. J Geophys Res 112: E01002. [CrossRef] [Google Scholar]
  • Mousis O, Hueso R, Bouley S, Colas F, et al. 2014. Instrumental methods for professional and amateur collaborations in planetary astronomy. Exp Astron 38: 91–191. [NASA ADS] [CrossRef] [Google Scholar]
  • Odstrcil D. 2003. Modeling 3-D solar wind structure. Adv Space Res 32: 497–506. [NASA ADS] [CrossRef] [Google Scholar]
  • Ortiz JL, Madiedo JM, Morales N, Santos-Sanz P, Aceituno FJ. 2015. Lunar impact flashes from Geminids: Analysis of luminous efficiencies and flux of large meteoroids on Earth. MNRAS 454: 344–352. [NASA ADS] [CrossRef] [Google Scholar]
  • Orton GS, Fletcher LN, Lisse CM, Chodas PW, Cheng A. 2011. The atmospheric influence, size and possible asteroidal nature of the July 2009 Jupiter impactor. Icarus 211: 587–602. [NASA ADS] [CrossRef] [Google Scholar]
  • Pellier C. 2012. Martian terminator projections observed by the HST. Commun Mars Observ 400: http://www.kwasan.kyoto-u.ac.jp/~cmo/cmomn4/CMO400.pdf. [Google Scholar]
  • Picardi G, et al. 2004. MARSIS: Mars advanced radar for subsurface and ionosphere sounding. In: Mars Express: The Scientific Payload, ESA Spec. Publ. 1240, Wilson A, Chicarro A (Eds.), ESA, Noordwijk, Netherlands. pp. 51–69. [Google Scholar]
  • Pizzo V, Millward G, Parsons A, Biesecker D, Hill S, Odstrcil D. 2011. Wang-Sheeley-Arge-Enlil cone model transitions to operations. Space Weather 9: 03004. [Google Scholar]
  • Pujic Z. 1994. Amateurs observe comet impacts, Southern Sky, Sept/Oct 1994. [Google Scholar]
  • Rouillard AP, Lavraud B., Genot V., Bouchemit M., Dufourg N., et al. 2017. A propagation tool to connect remote-sensing observations with in-situ measurements of heliospheric structures. Planet Space Sci 147: 61–77. [CrossRef] [Google Scholar]
  • Sánchez-Lavega A, Lecacheux J, Colas F, Gómez-Forrellad JM, Laques P, Miyazaki I, Parker D. 1995. Motions of the SL9 impact clouds. Geophys Res Lett 22: 1761–1764. [CrossRef] [Google Scholar]
  • Sánchez-Lavega A, Wesley A, Orton GS, Hueso R, Pérez-Hoyos S, Fletcher LN, et al. 2010. The impact of a large object on Jupiter in 2009 July. Astrophys J Lett 715: L155–L159. [NASA ADS] [CrossRef] [Google Scholar]
  • Sánchez-Lavega A, García-Muñoz A, García-Melendo E, Pérez-Hoyos S, Gómez-Forrellad JM, Pellier JM, et al. 2015. An extremely high altitude plume seen at Mars morning terminator. Nature 518: 525–528. [CrossRef] [Google Scholar]
  • Sánchez-Lavega A, Chen-Chen H, Ordonez-Etxeberria I, Hueso R, del Rio-Gaztelurrutia T, Garro A, Cardesín-Moinelo A, Titov D, Wood S. 2018. Limb clouds and dust on Mars from images obtained by the Visual Monitoring Cameraa (VMC) onboard Mars express. Icarus 299: 194–205. [CrossRef] [Google Scholar]
  • Santer R, Deschamps M, Ksanfomaliti LV, Dollfus A. 1986. Photopolarimetry of Martian aerosols. II – Limb and terminator measurements. A&A 158: 247–258. [Google Scholar]
  • Stevanocić J, Teanby NA, Wookey J, Selby N, Daubar IJ, Vaubaillon J, Garcia R. 2017. Bolide Airbursts as a seismic source for the 2018 Mars insight mission. Space Sci Rev 211: 525–545. [CrossRef] [Google Scholar]
  • Thampi SV, Krishnaprasad C, Bhardwaj A, Lee Y, Choudhary RK, Pant TK. 2018. MAVEN Observations of the response of Martian ionosphere to the interplanetary coronal mass ejections of March 2015. J Geophys Res Space Phys 123: 6917–6923. [CrossRef] [Google Scholar]
  • Tiscareno M, Mitchell CJ, Murray CD, Di Nino D, Hedman MM, Jürgen S, Burns JA, Cuzzi JN, Porco CC, Beurke K, Evans MW. 2013. Observations of Ejecta clouds produced by impacts on Saturn’s rings. Science 340: 460–464. [NASA ADS] [CrossRef] [Google Scholar]
  • Wolff MJ, López-Valverde M, Madeleine JB, Wilson RJ, Smith MD, Fouchet T, Delory GT. 2017. Radiative process: Techniques and applications. In: The Atmosphere and Climate of Mars, Haberle RM (Eds.), Cambridge University Press. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.