Open Access
Issue
J. Space Weather Space Clim.
Volume 9, 2019
Article Number A29
Number of page(s) 16
DOI https://doi.org/10.1051/swsc/2019029
Published online 09 August 2019
  • Albertson VD, Thorson JM, Clayton RE, Tripathy RE. 1973. Solar induced currents in power systems: Cause and effects. IEEE Trans Power Appar Syst PAS-92: 471–477. [CrossRef] [Google Scholar]
  • Alexeev II, Belenkaya ES, Kalegaev VV, Feldstein YI, Grafe A. 1996. Magnetic storms and magnetotail currents. J Geophys Res 101: 7737–7748. [CrossRef] [Google Scholar]
  • Alexeev II, Kalegaev VV, Belenkaya ES, Bobrovnikov SY, Feldstein YI, Gromova LI. 2001. Dynamic model of the magnetosphere: Case study for January 9–12, 1997. J Geophys Res 106(A11): 25683–25693. [CrossRef] [Google Scholar]
  • Alexeev II, Belenkaya ES, Bobrovnikov SY, Kalegaev VV. 2003. Modelling of the electromagnetic field in the interplanetary space and in the Earth’s magnetosphere. Space Sci Rev 107: 7–26. [CrossRef] [Google Scholar]
  • Baker DN, McPherron RL, Cayton TE, Kebesadel RW. 1990. Linear prediction filter analysis of relativistic electron properties at 6.6 RE. J Geophys Res 95(A9): 15133–15140. [CrossRef] [Google Scholar]
  • Baker DN, Daly E, Daglis I, Kappenman JG, Panasyuk M. 2004. Effects of space weather on technology infrastructure. Space Weather 2 (2): DOI: 10.1029/2003SW000044. [Google Scholar]
  • Burton RK, McPherron RL, Russell CT. 1975. An empirical relationship between interplanetary conditions and Dst. J Geophys Res 80: 4204–4214. [Google Scholar]
  • Brueckner GE, Howard RA, Koomen MJ, Korendyke CM, Michels DJ, et al. 1995. The Large Angle Spectroscopic Coronagraph (LASCO). Sol Phys 162: 357–402. DOI: 10.1007/BF00733434. [CrossRef] [Google Scholar]
  • Cheng CZF, Kuo YH, Anthes RA, Wu L. 2006. Satellite constellation monitors global and space weather. EOS Trans Am Geophys Union 87(17): 166–166. [CrossRef] [Google Scholar]
  • Dolenko SA, Orlov YV, Persiantsev IG, Shugai JS. 2005. Neural network algorithm for events forecasting and its application to space physics data. Lect Notes Comput Sci 3697: 527–532. [Google Scholar]
  • Ganushkina NY, Liemohn MW, Kubyshkina MV, Ilie R, Singer HJ. 2010. Distortions of the magnetic field by storm time current systems in Earth’s magnetosphere. Ann Geophys 28: 123–140. DOI: 10.5194/angeo-28-123-2010. [CrossRef] [Google Scholar]
  • Granja C, Polansky S, Vykydal Z, Pospisil S, Owens A, Kozacek Z, Simcak M. 2016. The SATRAM Timepix spacecraft payload in open space on board the Proba-V satellite for wide range radiation monitoring in LEO orbit. Planet Space Sci 125: 114–129. [CrossRef] [Google Scholar]
  • Iucci N, Levitin AE, Belov AV, Eroshenko EA, Ptitsyna NG, et al. 2005. Space weather conditions and spacecraft anomalies in different orbits. Space Weather 3(1): S01001. [Google Scholar]
  • Kalegaev VV. 2011. Dynamic geomagnetic field models. Geomagn Aeron 51(7): 855–865. [CrossRef] [Google Scholar]
  • Kalegaev VV, Makarenkov EV. 2008. Storm-time ring and tail current dynamics under extremely disturbed conditions. J Atm Solar-Terr Phys 70: 519–525. DOI: 10.1016/j.jastp.2007.08.029. [CrossRef] [Google Scholar]
  • Koons HC, Gorney DJ. 1990. A neural network model of the relativistic electron flux at geosynchronous orbit. J Geophys Res 96: 5549–5556. [CrossRef] [Google Scholar]
  • Kraft S, Lupi A, Luntama JP. 2019. ESA’s distributed space weather sensor system (D3S) utilizing hosted payloads for operational space weather monitoring. Acta Astronaut 156: 157–161. [CrossRef] [Google Scholar]
  • Kuznetsov SN, Suvorova AV. 1998. Solar wind magnetic field and plasma during magnetopause crossings at geosynchronous orbit. Adv Space Res 22(1): 63–66. [CrossRef] [Google Scholar]
  • Lanzerotti LJ, Thomson DJ, Maclennan CG. 1999. Engineering issues in space weather. In: Modern radio science, Stuchly MA (Ed.), Wiley-IEEE Press, Hoboken, NJ, pp. 25–51. [Google Scholar]
  • Lario D, Kwon R-Y, Vourlidas A, Raouafi NE, Haggerty DK, et al. 2016. Longitudinal properties of a Widespread Solar Energetic Particle Event on 2014 February 25: Evolution of the Associated CME Shock. Astrophys J 819: 72. DOI: 10.3847/0004-637X/819/1/72. [Google Scholar]
  • Lemen JR, Title AM, Akin DJ, Boerner PF, Chou C, et al. 2012. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol Phys 275: 17–40. DOI: 10.1007/s11207-011-9776-8. [Google Scholar]
  • Ling AG, Ginet GP, Hilmer RV, Perry KL. 2010. A neural network-based geosynchronous relativistic electron flux forecasting model. Space Weather 8(9): S09003. [Google Scholar]
  • Logachev YI, Bazilevskaya GA, Vashenyuk EV, Daibog EI, Ishkov VN, et al. 2014. Catalogue of solar proton events and their sources in the 20-23 cycles of solar activity. In: “Cosmic Rays and Solar Activity”, “Cosmic rays” series, 9, 155–175. [Google Scholar]
  • Logachev YI, Bazilevskaya GA, Vashenyuk EV, Daibog EI, Ishkov VN, et al. 2016. CATALOG of Solar Proton Events in the 23rd Cycle of Solar Activity (1996 – 2008). Logachev YI (Ed.), Moscow. DOI: 10.2205/ESDB-SAD-P-001-RU, http://www.wdcb.ru/stp/data/SPE/Catalog_SPE_23_cycle_SA.pdf. [Google Scholar]
  • Myagkova IN, Dolenko SA, Efitorov AO, Shirokii VR, Sentemova NS. 2017. Prediction of relativistic electron flux in the earth’s outer radiation belt at geostationary orbit by adaptive methods. Geomagn Aeron 57(1): 8–15. [CrossRef] [Google Scholar]
  • Patra SE, Spencer W, Horton W, Sojka J. 2011. Study of Dst/ring current recovery times using the WINDMI model. J Geophys Res 116: A02212. DOI: 10.1029/2010JA015824. [CrossRef] [Google Scholar]
  • Paulikas GA, Blake JB. 1979. Effects of the solar wind on magnetospheric dynamics: Energetic electrons at the synchronous orbit. In: Quantitative modeling of magnetospheric processes. Geophys. Monogr. Ser., Olson WP, (Ed.), AGU, Washington, DC, 21, pp. 180–202. [Google Scholar]
  • Podladchikova TV, Petrukovich AA. 2012. Extended geomagnetic storm forecast ahead of available solar wind measurements. Space Weather 10: S07001. [CrossRef] [Google Scholar]
  • Pembroke A, Toffoletto F, Sazykin S, Wiltberger M, Lyon J, Merkin V, Schmitt P. 2012. Initial results from a dynamic coupled magnetosphere-ionosphere-ring current model. J Geophys Res 117: A02211. DOI: 10.1029/2011JA016979. [CrossRef] [Google Scholar]
  • Pulkkinen A, Rastätter L. 2009. Minimum variance analysis-based propagation of the solar wind observations: Application to real-time global magnetohydrodynamic simulations. Space Weather 7: S12001. DOI: 10.1029/2009SW000468. [Google Scholar]
  • Reiss MA, Temmer M, Veronig AM, Nikolic L, Vennerstrom S, et al. 2016. Verification of high-speed solar wind stream forecasts using operational solar wind models. Space Weather 14: 495–510. [CrossRef] [Google Scholar]
  • Revallo M, Valach F, Hejda P, Bochníčeket J. 2014. Modeling of CME and CIR driven geomagnetic storms by means of artificial neural networks. J Atm Solar-Terr Phys 110: 9. [CrossRef] [Google Scholar]
  • Schrijver CJ, Kauristie K, Aylward AD, Denardini CM, Gibson SE, et al. 2015. Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS. Adv Space Res 55(12): 2745–2807. [NASA ADS] [CrossRef] [Google Scholar]
  • Shue JH, Song P, Russell CT, Steinberg JT, Chao JK, Zastenker G, et al. 1998. Magnetopause location under extreme solar wind conditions. J Geophys Res 103(A8): 17691–17700. [NASA ADS] [CrossRef] [Google Scholar]
  • Shugay Y, Slemzin V, Veselovsky I. 2014. Magnetic field sector structure and origins of solar wind streams in 2012. J Space Weather Space Clim 4: A24. DOI: 10.1051/swsc/2014021. [CrossRef] [Google Scholar]
  • Shugay YS, Veselovsky IS, Seaton DB, Berghmans D. 2011. Hierarchical approach to forecasting recurrent solar wind streams. Solar Syst Res 45: 546–556. DOI: 10.1134/S0038094611060086. [CrossRef] [Google Scholar]
  • Tsyganenko NA. 2002. A model of the near magnetosphere with a dawn-dusk asymmetry, 2, Parameterization and fitting to observations. J Geophys Res 107: A8. DOI: 10.1029/2001JA000220. [Google Scholar]
  • Tsyganenko NA, Andreeva VA. 2015. A forecasting model of the magnetosphere driven by an optimal solar wind coupling function. J Geophys Res: Space Phys 120(10): 8401–8425. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.