J. Space Weather Space Clim.
Volume 9, 2019
System Science: Application to Space Weather Analysis, Modelling, and Forecasting
Article Number A30
Number of page(s) 12
Published online 12 August 2019
  • Anderson JL. 2001. An ensemble adjustment Kalman filter for data assimilation. Mon Weather Rev 129: 2884–2903. [CrossRef] [Google Scholar]
  • Anderson JL. 2007. Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter. Physica D 230(1–2): 99–111. DOI: 10.1016/j.physd.2006.02.011. [CrossRef] [MathSciNet] [Google Scholar]
  • Anderson JL. 2009. Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus A 61(1): 72–83. DOI: 10.1111/j.1600-0870.2008.00361.x. [CrossRef] [Google Scholar]
  • Anderson JL. 2010. A non-Gaussian ensemble filter update for data assimilation. Mon Weather Rev 138: 4186–4198. [CrossRef] [Google Scholar]
  • Anderson JL, Anderson SL. 1999. A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon Weather Rev 127(12): 2741–2758. DOI: 10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2. [CrossRef] [Google Scholar]
  • Angling MJ, Elvidge S, Healy SB. 2018. Improved model for correcting the ionospheric impact on bending angle in radio occultation measurements. Atmos Meas Tech 11: 2213–2224. DOI: 10.5194/amt-11-2213-2018. [CrossRef] [Google Scholar]
  • Angling MJ, Jackson-Booth N. 2011. A short note on the assimilation of collocated and concurrent GPS and ionosonde data into the Electron Density Assimilative Model. Radio Sci 46: DOI: 10.1029/2010RS004566. [CrossRef] [Google Scholar]
  • Baker WE, Bloom SC, Woollen JS, Nestler MS, Brin E, Schlatter TW, Branstator GW. 1987. Experiments with a three-dimensional statistical objective analysis scheme using FGGE data. Mon Weather Rev 115(1): 272–296. DOI: 10.1175/1520-0493(1987)115<0272:EWATDS>2.0.CO;2. [CrossRef] [Google Scholar]
  • Bartels J. 1957. The geomagnetic measures for the time-variations of solar corpuscular radiation, described for use in correlation studies in other geophysical fields. Ann. Intern. Geophys. Year 4: 227–236. [Google Scholar]
  • Bilitza D, Rawer K, Pallaschke S. 1988. Study of ionospheric models for satellite orbit determination. Radio Sci 23(3): 223–232. [CrossRef] [Google Scholar]
  • Bilitza D, Reinisch BW. 2008. International reference ionosphere 2007: Improvements and new parameters. Journal of Advanced Space Research 42(4): 599–609. DOI: 10.1016/j.asr.2007.07.048. [Google Scholar]
  • Bishop CH, Etherton BJ, Majumdar SJ. 2001. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon Weather Rev 129: 420–436. [CrossRef] [Google Scholar]
  • Bloom SC, Takacs LL, da Silva AM, Ledvina D. 1996. Data assimilation using incremental analysis updates. Mon Weather Rev 124(6): 1256–1271. DOI: 10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2. [CrossRef] [Google Scholar]
  • Chartier AT, Jackson DR, Mitchell CN. 2013. A comparison of the effects of initializing different thermosphere-ionosphere model fields on storm time plasma density forecasts. J Geophy Res (Space Phys) 118(11): 7329–7337. DOI: 10.1002/2013JA019034. [CrossRef] [Google Scholar]
  • Chartier AT, Matsuo T, Anderson JL, Collins N, Hoar TJ, Lu G, Mitchell CN, Coster AJ, Paxton LJ, Bust GS. 2016. Ionospheric data assimilation and forecasting during storms. J Geophy Res (Space Phys) 121: 764–778. DOI: 10.1002/2014JA020799. [CrossRef] [Google Scholar]
  • Constantinescu EM, Sandu A, Chai T, Carmichael GR. 2007. Ensemble-based chemical data assimilation. I: General approach. Quart J Roy Meteor Soc 133(626): 1229–1243. DOI: 10.1002/qj.76. [CrossRef] [Google Scholar]
  • Eddy A. 1967. The statistical objective analysis of scalar data fields. J Appl Meterol 6(4): 597–609. [CrossRef] [Google Scholar]
  • Elvidge S. 2014. On the use of multi-model ensemble techniques for ionospheric and thermospheric characterisation. PhD Thesis. University of Birmingham. [Google Scholar]
  • Elvidge S, Angling MJ, Nava B. 2014. On the use of modified taylor diagrams to compare ionospheric assimilation models. Radio Sci 49: 737–745. DOI: 10.1002/2014RS005435. [CrossRef] [Google Scholar]
  • Etherton BJ. 2007. Preemptive forecasts using an ensemble Kalman filter. Mon Weather Rev 135(10): 3484–3495. DOI: 10.1175/MWR3480.1. [CrossRef] [Google Scholar]
  • Evensen G. 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophy Res 99(C5): 10143. DOI: 10.1029/94JC00572. [CrossRef] [Google Scholar]
  • Evensen G. 2009. Data assimilation, the ensemble Kalman filter, 2nd edn. Springer-Verlag, Berlin, Heidelberg. ISBN 9783642037108. [Google Scholar]
  • Fox-Rabinovitz MS. 1996. Diabatic dynamic initialization with an iterative time integration scheme as a filter. Mon Weather Rev 124(7): 1544–1557. DOI: 10.1175/1520-0493(1996)124<1544:DDIWAI>2.0.CO;2. [CrossRef] [Google Scholar]
  • Fridman SV, Nickisch LJ, Hausman M. 2009. Personal-computer-based system for real-time reconstruction of the three-dimensional ionosphere using data from diverse sources. Radio Sci 44(RS3008): 1–12. DOI: 10.1029/2008RS004040. [CrossRef] [Google Scholar]
  • Gandin L. 1963. Objective analysis of meteorological fields. Gridromet, Leningrad. English translation (Jerusalem: Israel Program for Scientific Translation), 1965. [Google Scholar]
  • Giovanni GD, Radicella S. 1990. An analytical model of the electron density profile in the ionosphere. Adv Space Res 10(11): 27–30. DOI: 10.1016/0273-1177(90)90301-F. [CrossRef] [Google Scholar]
  • Hagan ME, Burrage MD, Forbes JM, Hackney J, Randel WJ, Zhang X. 1999. GSWM-98: Results for migrating solar tides. J Geophy Res (Space Phys) 104(A4): 6813–6827. DOI: 10.1029/1998JA900125. [Google Scholar]
  • Ham Y-G, Song H-J, Jung J, Lim G-H. 2016. Development of the nonstationary incremental analysis update algorithm for sequential data assimilation system. Adv Meteorol 2016: 4305204. DOI: 10.1155/2016/4305204. [Google Scholar]
  • Hamill TM, Whitaker JS. 2005. Accounting for the error due to unresolved scales in ensemble data assimilation: a comparison of different approaches. Mon Weather Rev 133(11): 3132–3147. DOI: 10.1175/MWR3020.1. [CrossRef] [Google Scholar]
  • Hamill TM, Whitaker JS, Snyder C. 2001. Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon Weather Rev 129(11): 2776–2790. DOI: 10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2. [CrossRef] [Google Scholar]
  • Hamilton JD. 1994. Time series analysis, Princeton University Press, Princeton, NJ. [Google Scholar]
  • Hernández-Pajares M, Juan JM, Sanz J. 1999. New approaches in global ionospheric determination using ground GPS data. J Atmos Solar Terr Phys 61: 1237–1247. [CrossRef] [Google Scholar]
  • Hernández-Pajares M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A. 2009. The IGS VTECmaps: a reliable source of ionospheric information since 1998. Special IGS issue of J Geodes 83(3–4): 263–275. DOI: 10.1007/s00190-008-266-1. [Google Scholar]
  • Hernández-Pajares M, Roma-Dollase D, Krankowski A, García-Rigo A, Orús-Pérez R. 2017. Methodology and consistency of slant and vertical assessments for ionospheric electron content models. J Geodesy 91(12): 1405–1414. DOI: 10.1007/s00190-017-1032-z. [CrossRef] [Google Scholar]
  • Hunt BR, Kostelich EJ, Szunyogh I. 2007. Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D 230(1–2): 112–126. DOI: 10.1016/j.physd.2006.11.008. [CrossRef] [Google Scholar]
  • Kalman RE. 1960. A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng 82: 34–45. [Google Scholar]
  • Kalnay E. 2005. The future of data assimilation: 4D-Var or ensemble Kalman filter. Available at [Google Scholar]
  • Kang J-S, Kalnay E, Miyoshi T, Liu J, Fung I. 2012. Estimation of surface carbon fluxes with an advanced data assimilation methodology. J Geophys Res (Atmos) 117(D24): D24101. DOI: 10.1029/2012JD018259. [Google Scholar]
  • Le Dimet F-X, Talagrand O. 1986. Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus 38A: 97–110. [CrossRef] [Google Scholar]
  • Lee IT, Matsuo T, Richmond AD, Liu JY, Wang W, Lin CH, Anderson JL, Chen MQ. 2012. Assimilation of FORMOSAT-3/COSMIC electron density profiles into a coupled thermosphere/ionosphere model using ensemble Kalman filtering. J Geophys Res 117: A10318. DOI: 10.1029/2012JA017700. [Google Scholar]
  • Lee M-S, Kuo Y-H, Barker DM, Lim E. 2006. Incremental analysis updates initialization technique applied to 10-km MM5 and MM5 3DVAR. Mon Weather Rev 134(5): 1389–1404. DOI: 10.1175/MWR3129.1. [CrossRef] [Google Scholar]
  • Li H, Kalnay E, Miyoshi T. 2009. Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter. Quart J Roy Meteor Soc 135(639): 523–533. DOI: 10.1002/qj.371. [CrossRef] [Google Scholar]
  • Li Y, Huang Z, Zhou N, Lee B, Diao R, Du P. 2012. Application of ensemble Kalman filter in power system state tracking and sensitivity analysis. PES T&D 1–8: 2012. DOI: 10.1109/TDC.2012.6281499. [Google Scholar]
  • Liang X, Zheng X, Zhang S, Wu G, Dai Y, Yong L. 2012. Maximum likelihood estimation of inflation factors on error covariance matrices for ensemble Kalman filter assimilation. Quart J Roy Meteor Soc 138: 263–273. [CrossRef] [Google Scholar]
  • Llewellyn SK, Bent RB. 1973. Documentation and description of the bent ionospheric model. Tech. Rep. Air Force Geophysics Laboratory, Hanscom AFB, MA. [Google Scholar]
  • Lorenc AC, Bell RS, Macpherson B. 1991. The Meteorological Office analysis correction data assimilation scheme. Quart J Roy Meteor Soc 117(497): 59–89. DOI: 10.1002/qj.49711749704. [CrossRef] [Google Scholar]
  • Macpherson B. 1991. Dynamic initialization by repeated insertion of data. Quart J Roy Meteor Soc 117(501): 965–991. DOI: 10.1002/qj.49711750105. [CrossRef] [Google Scholar]
  • Mandel J, Beezley JD, Coen JL, Kim M. 2009. Data assimilation for wildland fires. 29: 47–65. [Google Scholar]
  • McNamara LF. 2009. Spatial correlations of foF2 deviations and their implications for global ionospheric models: 2. Digisondes in the United States, Europe, and South Africa. Radio Sci 44: DOI: 10.1029/2008RS003956. [Google Scholar]
  • McNamara LF, Angling MJ, Elvidge S, Fridman SV, Hausman MA, Nickisch LJ, McKinnell L-AA. 2013. Assimilation procedures for updating ionospheric profiles below the F2 peak. Radio Sci 48(2): 143–157. DOI: 10.1002/rds.20020. [CrossRef] [Google Scholar]
  • Metref S, Cosme E, Snyder C, Brasseur P. 2014. A non-Gaussian analysis scheme using rank histograms for ensemble data assimilation. Nonlin Process Geophys 21: 869–885. [CrossRef] [Google Scholar]
  • Miyoshi T. 2011. The Gaussian approach to adaptive covariance inflation and its implementation with the local ensemble transform Kalman filter. Mon Weather Rev 139(5): 1519–1535. DOI: 10.1175/2010MWR3570.1. [CrossRef] [Google Scholar]
  • Nava B, Coisson P, Radicella S. 2008. A new version of the NeQuick ionosphere electron density model. J Atmos Sol Terr Phys 70(15): 1856–1862. DOI: 10.1016/j.jatsp.2008.01.015. [CrossRef] [Google Scholar]
  • Neale RB. 2010. Description of the NCAR community atmosphere model. TN-486+STR, National Centre for Atmospheric Research, Boulder, CO. [Google Scholar]
  • Orus R, Hernandez-Pajares M, Juan JM, Sanz J, Garcia-Fernandez M. 2002. Performance of different TEC models to provide GPS ionospheric corrections. J Atmos SolarTerr Phys 64: 2055–2062. [CrossRef] [Google Scholar]
  • Ott E, Hunt B, Szunyogh I, Zimin A, Kostelich E, Corrazza M, Kalnay E, Yorke J. 2004. A local ensemble Kalman filter for atmospheric data assimilation. Tellus 56: 415–428. [CrossRef] [Google Scholar]
  • Plackett RL. 1950. Some theorems in least squares. Biometrika 37(1–2): 149–157. Available at [CrossRef] [Google Scholar]
  • Polavarapu S, Ren S, Clayton AM, Sankey D, Rochon Y. 2004. On the relationship between incremental analysis updating and incremental digital filtering. Mon Weather Rev 132(10): 2495–2502. DOI: 10.1175/1520-0493(2004)32<2495:OTRBIA>2.0.CO;2. [CrossRef] [Google Scholar]
  • Qian L, Burns AG, Emery BA, Foster B, Lu G, Maute A, Richmond AD, Roble RG, Solomon SC, Wang W. 2014. The NCAR TIE-GCM: A community model of the coupled thermosphere/ionosphere systemIn: Modeling the ionosphere-thermosphere system, Huba J, Schunk R, Khazanov G (Eds.), Geophysical Monograph Series, John Wiley & Sons, Washington. pp. 73–84. DOI: 10.1002/9781118704417.ch7. [CrossRef] [Google Scholar]
  • Reichle RH, Walker JP, Koster RD, Houser PR. 2002. Extended versus ensemble Kalman filtering for land data assimilation. J Hydrometeorol 3: 728–740. [CrossRef] [Google Scholar]
  • Richmond AD, Ridley EC, Roble RG. 1992. A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys Res Lett 19: 601–604. [CrossRef] [Google Scholar]
  • Roble RG, Ridley EC, Richmond AD. 1988. A coupled thermosphere/ionosphere general circulation model. Geophys Res Lett 15(88): 1325–1328. [NASA ADS] [CrossRef] [Google Scholar]
  • Scherliess L, Schunk RW, Sojka JJ, Thompson DC, Zhu L. 2006. Utah State University global assimilation of ionospheric measurements Gauss-Markov Kalman filter model of the ionosphere: Model description and validation. J Geophys Res 111(A11): 315. DOI: 10.1029/2006JA011712. [CrossRef] [Google Scholar]
  • Scherliess L, Thompson DC, Schunk RW. 2009. Ionospheric dynamics and drivers obtained from a physics-based data assimilation model. Radio Sci 44: DOI: 10.1029/2008RS004068. [Google Scholar]
  • Schunk R, Scherliess L, Sojka JJ, Thompson DC, Zhu L. 2005. Ionospheric weather forecasting on the horizon. Space Weather 3(8): S08007. DOI: 10.1029/2004SW000138. [CrossRef] [Google Scholar]
  • Schunk RW, Scherliess L, Eccles V, Gardner LC, Sojka JJ, et al. 2016. Space weather forecasting with a Multimodel Ensemble Prediction System (MEPS). Radio Sci 51(7): 1157–1165. DOI: 10.1002/2015RS005888. [CrossRef] [Google Scholar]
  • Shim JS, Kuznetsova M, Rastaetter L, Bilitza D, Butala M, et al. 2012. CEDAR Electrodynamics Thermosphere Ionosphere (ETI) Challenge for systematic assessment of ionosphere/thermosphere models: Electron density, neutral density, NmF2, and hmF2 using space based observations. Space Weather 10: DOI: 10.1029/2012SW000851. [Google Scholar]
  • Shim JS, Kuznetsova M, Rastaetter L, Hesse M, Bilitza D, et al. 2011. Electrodynamics Thermosphere Ionosphere (ETI) Challenge for systematic assessment of ionosphere/thermosphere models: NmF2, hmF2, and vertical drift using ground-based observations. Space Weather 9. DOI: 10.1029/2011SW000727. [Google Scholar]
  • Szunyogh I. 2014. Applicable atmospheric dynamics: Techniques for the exploration of atmospheric dynamics. World Scientific, Singapore. ISBN 9814630578. [CrossRef] [Google Scholar]
  • Tapping KF. 2013. The 10.7 cm solar radio flux (F10.7). Space Weather 11(7): 394–406. [NASA ADS] [CrossRef] [Google Scholar]
  • Wang C, Hajj GA, Pi X, Rosen G, Wilson B. 2004a. Development of the global assimilative model. Rad Sci 39(RS1S06). DOI: 10.1029/2002RS002854. [Google Scholar]
  • Wang X, Bishop CH, Julier SJ. 2004b. Which is better, an ensemble of positive-negative pairs or a centered spherical simplex ensemble? Mon Weather Rev 132: 1590–1605. [CrossRef] [Google Scholar]
  • Whitaker JS, Hamill TM, Wei X, Song Y, Toth Z. 2008. Ensemble data assimilation with the NCEP global forecast system. Mon Weather Rev 136(2): 463–482. DOI: 10.1175/2007MWR2018.1. [CrossRef] [Google Scholar]
  • Yang S-C, Kalnay E, Hunt B, Bowler NE. 2009. Weight interpolation for efficient data assimilation with the local ensemble transform Kalman filter. Quart J Roy Meteor Soc 135(638): 251–262. DOI: 10.1002/qj.353. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.