Issue
J. Space Weather Space Clim.
Volume 9, 2019
System Science: Application to Space Weather Analysis, Modelling, and Forecasting
Article Number A15
Number of page(s) 12
DOI https://doi.org/10.1051/swsc/2019012
Published online 17 May 2019
  • Abdu MA, Batista IS, Sobral JHA. 1992. A new aspect of magnetic declination control on equatorial spread-F and F region dynamo. J Geophys Res 97(A10): 14897–14904. [CrossRef] [Google Scholar]
  • Aquino M, Andreotti M, Dodson A, Strangeways H. 2007. Improving the GNSS positioning stochastic model in the presence of ionospheric scintillation. Adv Space Res 40(3): 426–435. [CrossRef] [Google Scholar]
  • Aquino M, Monico J, Dodson A, Marques H, De Franceschi G, Alfonsi L, Romano V, Andreotti M. 2009. Improving the GNSS positioning stochastic model in the presence of ionospheric scintillation. J Geodesy 83: 953–966. DOI: 10.1007/s00190-009-0313-6. [CrossRef] [Google Scholar]
  • Banerjee PK, Dabas RS, Reddy BM. 1992. C and L band transionospheric scintillation experiment: Some results for applications to satellite radio systems. Radio Sci 27: 955–969. DOI: 10.1029/92RS01307. [CrossRef] [Google Scholar]
  • Beach TL, Kintner PM. 2001. Development and use of a GPS ionospheric scintillation monitor. IEEE Trans Geosci Remote Sens 39: 918–928. [CrossRef] [Google Scholar]
  • Carrano CS, Groves KM. 2010. Temporal decorrelation of gps satellite signals due to multiple scattering from ionospheric irregularities. Proc. of the 2010 Institute of Navigation ION GNSS meeting Navigation ION GNSS meeting. [Google Scholar]
  • Carrano CS, Valladares CE, Groves KM. 2012. Latitudinal and local time variation of ionospheric turbulence parameters during the Conjugate Point Equatorial Experiment in Brazil. Int J Geophys, 2012: 103963. DOI: 10.1155/2012/103963. [CrossRef] [Google Scholar]
  • Coleman TF, Li Y. 1994. On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds. Math Program 67: 189–224. DOI: 10.1007/BF01582221. [CrossRef] [Google Scholar]
  • Coleman TF, Li Y. 1996. An interior, trust region approach for nonlinear minimization subject to bounds. SIAM J Optim 6: 418–445. [CrossRef] [MathSciNet] [Google Scholar]
  • Datta-Barua S, Lee J, Pullen S, Luo M, Ene A, Qiu D, Zhang G, Enge P. 2010. Ionospheric threat parameterization for local area global-positioning-system-based aircraft landing system. J Aircraft 47: 1141–1151. DOI: 10.2514/1.46719. [CrossRef] [Google Scholar]
  • Fremouw EJ, Leadabrand RL, Livingston RC, Cousins MD, Rino CL, Fair BC, Long RA. 1978. Early results from the DNA wideband satellite experiment – Complex-signal scintillation. Radio Sci 13: 167–187. [CrossRef] [Google Scholar]
  • Fremouw EJ, Livingston RC, Miller DA. 1980. On the statistics of scintillating signals. J Atmos Terr Phys 42: 717–731. [CrossRef] [Google Scholar]
  • Fontán FP, Espiñeira PM. 2008. Modelling the wireless propagation channel: a simulation approach with Matlab. Wiley. https://onlinelibrary.wiley.com/doi/book/10.1002/9780470751749. [CrossRef] [Google Scholar]
  • Guo K, Zhao Y, Liu Y, Wang JL, Zhang CX. 2017. Study of ionospheric scintillation characteristics in australia with GNSS during 2011–2015. Adv Space Res 59: 2909–2922. [CrossRef] [Google Scholar]
  • Humphreys TE, Psiaki ML, Hinks JC, Kintner PM Jr. 2009. Simulating ionosphere-induced scintillation for testing GPS receiver phase tracking loops. IEEE J Sel Top Signal Process 3: 707–715. [CrossRef] [Google Scholar]
  • Klobuchar JA. 1987. Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans Aerospace Electron Syst 3: 325–331. [CrossRef] [Google Scholar]
  • Marques HA, Marques HAS, Aquino M, Veettil SV, Monico JFG. 2018. Accuracy assessment of precise point positioning with multi-constellation GNSS data under ionospheric scintillation effects. J Space Weather Space Clim 8: A15. DOI: 10.1051/swsc/2017043. [CrossRef] [Google Scholar]
  • Moraes AO, Rodrigues FS, Perrella WJ, Paula ER. 2011. Analysis of the characteristics of low-latitude GPS amplitude scintillation measured during solar maximum conditions and implications for receiver performance. Surv Geophys 33(5): 1107–1131. DOI: 10.1007/s10712-011-9161-z. [CrossRef] [Google Scholar]
  • Moraes AO, Paula ER, Perrella WJ, Rodrigues FS. 2012. On the distribution of GPS signal amplitudes during the low-latitude ionospheric scintillation. GPS Solut 17(4): 499–510. DOI: 10.1007/s10291-012-0295-3. [CrossRef] [Google Scholar]
  • Moraes AO, de Paula ER, Muella MTAH, Perrella WJ. 2014. On the second order statistics for GPS ionospheric scintillation modeling. Radio Sci 49(2): 94–105. DOI: 10.1002/2013RS005270. [CrossRef] [Google Scholar]
  • Moraes AO, de Muella MTAH, Paula ER, de Oliveira CBA, Terra WP, Perrella WJ, Meinbach-Rosa PRP. 2017. Statistical evaluation of GLONASS amplitude scintillation over low latitudes in the Brazilian territory. Adv Space Res 61(7): 1776–1789. DOI: 10.1016/j.asr.2017.09.032. [CrossRef] [Google Scholar]
  • Moraes AO, Vani BC, Costa E, Abdu MA, de Paula ER, et al. 2018a. GPS availability and positioning issues when the signal paths are aligned with ionospheric plasma bubbles. GPS Solut 22: 95. DOI: 10.1007/s10291-018-0760-8. [CrossRef] [Google Scholar]
  • Moraes ADO, Vani BC, Costa E, Sousasantos J, Abdu MA, et al. 2018b. Ionospheric scintillation fading coefficients for the GPS L1, L2, and L5 frequencies. Radio Sci 53: 1165–1174. DOI: 10.1029/2018RS006653. [CrossRef] [Google Scholar]
  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP. 1992. Numerical recipes in C: The art of scientific computing, Second edition. Cambridge University Press, Cambridge, UK. Chapter 15. [Google Scholar]
  • Seo J, Walter T, Enge P. 2011. Availability impact on GPS aviation due to strong ionospheric scintillation. IEEE Trans Aerospace Electron Syst 47(3): 1963–1973. DOI: 10.1109/TAES.2011.5937276. [CrossRef] [Google Scholar]
  • Simon MK, Alouini M. 2006. Digital communications over fading channels. Wiley, New York, NY. [Google Scholar]
  • Sobral JHA, Abdu MA, Takahashi H, de Taylor MJ, Paula ER, Zamlutti CJ, Aquino MG, Borba GL. 2002. Ionospheric plasma bubble climatology over Brazil based on 22 years (1977–1998) of 630 nm airglow observations. J Atmos Sol-Terr Phys 64: 1517–1524. [CrossRef] [Google Scholar]
  • Sousasantos J, de Oliveira Moraes A, Sobral JHA, Muella MTAH, de Paula ER, Paolini RS. 2018. Climatology of the scintillation onset over southern Brazil. Ann Geophys 36: 565–576. DOI: 10.5194/angeo-36-565-2018. [CrossRef] [Google Scholar]
  • Stolle C, Lühr H, Rother M, Balasis G. 2006. Magnetic signatures of equatorial spread F as observed by the CHAMP satellite. J Geophys Res 111: A02304. DOI: 10.1029/2005JA011184. [CrossRef] [Google Scholar]
  • Thébault E, Finlay CC, Beggan CD, Alken P., Aubert J.. et al. 2015. International geomagnetic reference field: the 12th generation. Earth Planet Space 67: 79. DOI: 10.1186/s40623-015-0228-9. [CrossRef] [Google Scholar]
  • Veettil SV, Aquino M, Spogli L, Cesaroni C. 2018. A statistical approach to estimate Global Navigation Satellite Systems (GNSS) receiver signal tracking performance in the presence of ionospheric scintillation. J Space Weather Space Clim 8: A51. DOI: 10.1051/swsc/2018037. [CrossRef] [Google Scholar]
  • Xiong C, Stolle C, Lühr H. 2016. The Swarm satellite loss of GPS signal and its relation to ionospheric plasma irregularities. Space Weather 14: 563–577. DOI: 10.1002/2016SW001439. [CrossRef] [Google Scholar]
  • Yacoub MD. 2007a. The α-μ distribution: A physical fading model for the Stacy distribution. IEEE Trans Vehic Technol 56: 27–34. DOI: 10.1109/TVT.2006.883753. [CrossRef] [Google Scholar]
  • Yacoub MD. 2007b. The κ-μ distribution and the η-μ distribution. IEEE Antennas Prop Mag 49: 68–81. [CrossRef] [Google Scholar]
  • Yeh KC, Liu CH. 1982. Radio wave scintillation in the ionosphere. Proc of the IEEE 70(4): 324–360. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.