Open Access
J. Space Weather Space Clim.
Volume 9, 2019
Article Number A9
Number of page(s) 11
Published online 05 March 2019
  • Aghara SK, Sriprisan SI, Singleterry RC, Sato T. 2015. Shielding evaluation for solar particle events using MCNPX, PHITS and OLTARIS codes. Life Sci Space Res 4: 79–91. DOI: 10.1016/j.lssr.2014.12.003. [CrossRef] [Google Scholar]
  • Berger T, Matthiä D, Burmeister S, Rios R, Lee K, Semones E, Hassler DM, Stoffle N, Zeitlin C. 2018. The Solar Particle Event on 10 September 2017 as observed on-board the International Space Station (ISS). Space Weather 16: 1173–1189. DOI: 10.1029/2018SW001920. [CrossRef] [Google Scholar]
  • Evans DS, Greer MS. 2000. Polar orbiting environmental satellite space environment monitor – 2 Instrument descriptions and archive data documentation, NOAA Technical Memorandum OAR SEC 93, Boulder, Colorado. [Google Scholar]
  • Ginet GP, O’Brien TP, Huston SL, Johnston WR, Guild TB, et al. 2013. AE9, AP9 and SPM: New models for specifying the trapped energetic particle and space plasma environment. Space Sci Rev 179: 579–615. DOI: 10.1007/s11214-013-9964-y. [CrossRef] [Google Scholar]
  • Heynderickx D, Quaghebeur B, Wera J, Daly EJ, Evans HDR. 2004. New radiation environment and effects models in the European Space Agency's Space Environment Information System (SPENVIS). Space Weather 2: S10S03. DOI: 10.1029/2004sw000073. [CrossRef] [Google Scholar]
  • Hu S, Zeitlin C, Atwell W, Fry D, Barzilla JE, Semones E. 2016. Segmental interpolating spectra for solar particle events and in situ validation. Space Weather 14: 742–753. DOI: 10.1002/2016SW001476. [CrossRef] [Google Scholar]
  • ICRP. 2010. Conversion coefficients for radiological protection quantities for external radiation exposures, ICRP Publication 116. Ann ICRP 40: 2–5. [Google Scholar]
  • ICRP. 2013. Assessment of radiation exposure of astronauts in space, ICRP Publication 123. Ann ICRP 42: 1–339. [Google Scholar]
  • Jiggens P, Heynderickx D, Sandberg I, Truscott P, Raukunen O, Vainio R. 2018. Updated model of the solar energetic proton environment in space. J Space Weather Space Clim 8: A31. DOI: 10.1051/Swsc/2018010. [CrossRef] [Google Scholar]
  • Kataoka R, Sato T, Kubo Y, Shiota D, Kuwabara T, Yashiro S, Yasuda H. 2014. Radiation dose forecast of WASAVIES during ground-level enhancement. Space Weather 12: 380–386. DOI: 10.1002/2014sw001053. [CrossRef] [Google Scholar]
  • Kataoka R, Sato T, Miyake S, Shiota D, Kubo Y. 2018. Radiation dose nowcast during the ground level enhancement on 10–11 September 2017. Space Weather 16: 917–923. DOI: 10.1029/2018SW001874. [CrossRef] [Google Scholar]
  • Kubo Y, Kataoka R, Sato T. 2015. Interplanetary particle transport simulation for warning system for aviation exposure to solar energetic particles. Earth Planets Space 67: 117. DOI: 10.1186/S40623-015-0260-9. [CrossRef] [Google Scholar]
  • Luhmann JG, Mays ML, Odstrcil D, Li Y, Bain H, et al. 2017. Modeling solar energetic particle events using ENLIL heliosphere simulations. Space Weather 15: 934–954. DOI: 10.1002/2017SW001617. [NASA ADS] [CrossRef] [Google Scholar]
  • Matthiä D, Berger T, Mrigakshi AI, Reitz G. 2013. A ready-to-use galactic cosmic ray model. Adv Space Res 51: 329–338. DOI: 10.1016/j.asr.2012.09.022. [CrossRef] [Google Scholar]
  • Matthiä D, Meier M, Berger T. 2018. The solar particle event on 10-13 September 2017 – Spectral reconstruction and calculation of the radiation exposure in aviation and space. Space Weather 16(8): 977–986. DOI: 10.1029/2018SW001921. [CrossRef] [Google Scholar]
  • Mertens C, Slaba T, Hu S. 2018. Active dosimeter-based estimate of astronaut acute radiation risk for real-time solar energetic particle events. Space Weather 16(9): 1291–1316. DOI: 10.1029/2018SW001971. [CrossRef] [Google Scholar]
  • Mertens CJ, Kress BT, Wiltberger M, Blattnig SR, Slaba TS, Solomon SC, Engel M. 2010. Geomagnetic influence on aircraft radiation exposure during a solar energetic particle event in October 2003. Space Weather 8: S03006. DOI: 10.1029/2009sw000487. [NASA ADS] [CrossRef] [Google Scholar]
  • Mewaldt RA, Cohen CMS, Labrador AW, Leske RA, Mason GM, et al. 2005. Proton, helium, and electron spectra during the large solar particle events of October-November 2003. J Geophys Res 110: A9. DOI: 10.1029/2005ja011038. [CrossRef] [Google Scholar]
  • Meyer P, Parker EN, Simpson JA. 1956. Solar cosmic rays of February, 1956 and their propagation through interplanetary space. Phys Rev 104: 768. [NASA ADS] [CrossRef] [Google Scholar]
  • Miyake S, Kataoka R, Sato T. 2017. Cosmic ray modulation and radiation dose of aircrews during the solar cycle 24/25. Space Weather 15: 589–605. DOI: 10.1002/2016SW001588. [CrossRef] [Google Scholar]
  • Nymmik RA, Panasyuk MI, Suslov AA. 1996. Galactic cosmic-ray flux simulation and prediction, near-earth radiation environment including time variations and secondary radiation. Adv Space Res 17: 19–30. [CrossRef] [Google Scholar]
  • O’Neill PM, Golge S, Slaba T. 2014. Badhwar – O’Neill 2014 galactic cosmic ray flux model description. NASA/TP-2015-218569. [Google Scholar]
  • Reitz G, Beaujean R, Benton E, Burmeister S, Dachev T, Deme S, Luszik-Bhadra M, Olko P. 2005. Space radiation measurements on-board ISS – The DOSMAP experiment. Radiat Prot Dosim 116: 374–379. DOI: 10.1093/rpd/nci262. [CrossRef] [Google Scholar]
  • Richardson IG, Cane HV, Vonrosenvinge TT. 1991. Prompt arrival of solar energetic particles from far-eastern events – The role of large-scale interplanetary magnetic-field structure. J Geophys Res 96: 7853–7860. DOI: 10.1029/91ja00379. [NASA ADS] [CrossRef] [Google Scholar]
  • Sato T. 2015. Analytical model for estimating terrestrial cosmic ray fluxes nearly anytime and anywhere in the world: Extension of PARMA/EXPACS. PLoS One 10: e0144679. DOI: 10.1371/journal.pone.0144679. [CrossRef] [Google Scholar]
  • Sato T. 2016. Analytical model for estimating the zenith angle dependence of terrestrial cosmic ray fluxes. PLoS One 11: e0160390. DOI: 10.1371/journal.pone.0160390. [CrossRef] [PubMed] [Google Scholar]
  • Sato T, Iwamoto Y, Hashimoto S, Ogawa T, Furuta T, et al. 2018a. Features of particle and heavy ion transport code system PHITS Version 3.02. J Nucl Sci Technol 55: 684–690. DOI: 10.1080/00223131.2017.1419890. [CrossRef] [Google Scholar]
  • Sato T, Kataoka R, Shiota D, Kubo Y, Ishii M, Yasuda H, Miyake S, Park I, Miyoshi Y. 2018b. Real-time and automatic analysis program for WASAVIES: Warning system for aviation exposure to solar energetic particles. Space Weather 16: 924–936. DOI: 10.1029/2018SW001873. [CrossRef] [Google Scholar]
  • Sato T, Kataoka R, Yasuda H, Yashiro S, Kuwabara T, Shiota D, Kubo Y. 2014. Air shower simulation for WASAVIES: Warning system for aviation exposure to solar energetic particles. Radiat Prot Dosim 161: 274–278. DOI: 10.1093/Rpd/Nct332. [CrossRef] [Google Scholar]
  • Sato T, Nagamatsu A, Ueno H, Kataoka R, Miyake S, Takeda K, Niita K. 2018c. Comparison of cosmic-ray environments on Earth, Moon, Mars, and spacecraft using PHITS. Radiat Prot Dosim 180: 146–149. DOI: 10.1093/rpd/ncx192. [CrossRef] [Google Scholar]
  • Semkova J, Dachev T, Koleva R, Bankov N, Maltchev S, Benghin V, Shurshakov V, Petrov V. 2014. Observation of radiation environment in the International Space Station in 2012-March 2013 by Liulin-5 particle telescope. J Space Weather Space Clim 4: A32. DOI: 10.1051/Swsc/2014029. [CrossRef] [Google Scholar]
  • Shiota D, Kataoka R. 2016. Magnetohydrodynamic simulation of interplanetary propagation of multiple coronal mass ejections with internal magnetic flux rope (SUSANOO-CME). Space Weather 14: 56–75. DOI: 10.1002/2015SW001308. [NASA ADS] [CrossRef] [Google Scholar]
  • Slaba TC, Blattnig SR. 2014. GCR environmental models I: Sensitivity analysis for GCR environments. Space Weather 12: 217–224. DOI: 10.1002/2013SW001025. [CrossRef] [Google Scholar]
  • Townsend LW, Adams JH, Blattnig SR, Clowdsley MS, Fry DJ, et al. 2018. Solar particle event storm shelter requirements for missions beyond low Earth orbit. Life Sci Space Res 17: 32–39. DOI: 10.1016/j.lssr.2018.02.002. [CrossRef] [Google Scholar]
  • Tsyganenko NA. 1989. A magnetospheric magnetic-field model with a warped tail current sheet. Planet Space Sci 37: 5–20. DOI: 10.1016/0032-0633(89)90066-4. [NASA ADS] [CrossRef] [Google Scholar]
  • Tsyganenko NA, Andreeva VA. 2015. A forecasting model of the magnetosphere driven by an optimal solar wind coupling function. J Geophys Res 120: 8401–8425. DOI: 10.1002/2015JA021641. [CrossRef] [Google Scholar]
  • Tylka AJ, Adams JH, Boberg PR, Brownstein B, Dietrich WF, et al. 1997. CREME96: A revision of the cosmic ray effects on micro-electronics code. IEEE Trans Nucl Sci 44: 2150–2160. DOI: 10.1109/23.659030. [NASA ADS] [CrossRef] [Google Scholar]
  • Xapsos MA, Summers GP, Barth JL, Stassinopoulos EG, Burke EA. 1999. Probability model for worst case solar proton event fluences. IEEE Trans Nucl Sci 46: 1481–1485. DOI: 10.1109/23.819111. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.