Open Access
Issue |
J. Space Weather Space Clim.
Volume 9, 2019
|
|
---|---|---|
Article Number | A27 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/swsc/2019025 | |
Published online | 16 July 2019 |
- Alberti T, Laurenza M, Cliver EW, Storini M, Consolini G, Lepreti F. 2017. Solar activity from 2006 to 2014 and short-term forecasts of solar proton events using the ESPERTA model. Astrophys J 838: 59. DOI: 10.3847/1538-4357/aa5cb8. [CrossRef] [Google Scholar]
- Augusto CR, Navia CE, de Oliveira MN, Nepomuceno AA, Fauth AC. 2016. Ground level observations of relativistic solar particles on Oct 29th, 2015: Is it a new GLE on the current solar cycle? arXiv:1603.08863v1 [astro-ph.SR]. [Google Scholar]
- Balch CC. 2008. Updated verification of the Space Weather Prediction Center’s solar energetic particle prediction model. Space Weather 6: S01001. DOI: 10.1029/2007SW000337. [CrossRef] [Google Scholar]
- Beck P, Latocha M, Rollet S, Stehno G. 2005. TEPC reference measurements at aircraft altitudes during a solar storm. Adv Space Res 16(9): 1627–1633. DOI: 10.1016/j.asr.2005.05.035. [CrossRef] [Google Scholar]
- Boerner P, Edwards C, Lemen J, Rausch A, Schrijver C, et al. 2012. Initial calibration of the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol Phys 275: 41–66. DOI: 10.1007/s11207-011-9804-8. [Google Scholar]
- Chen J, Kunkel V. 2010. Temporal and physical connection between coronal mass ejections and flares. Astrophys J 717: 1105–1122. DOI: 10.1088/0004-637X/717/2/1105. [Google Scholar]
- Dierckxsens M, Tziotziou K, Dalla S, Patsou I, Marsh MS, Crosby NB, Malandraki O, Tsiropoula G. 2015. Relationship between solar energetic particles and properties of flares and CMEs: Statistical analysis of solar cycle 23 events. Sol Phys 290: 841–874. DOI: 10.1007/s11207-014-0641-4. [Google Scholar]
- Durante M, Cucinotta FA. 2011. Physical basis of radiation protection in space travel. Rev Modern Phys 83: 1245. DOI: 10.1103/RevModPhys.83.1245. [Google Scholar]
- Evans JS, Strickland DJ, Woo WK, McMullin DR, Plunkett SP, Viereck RA, Hill SM, Woods TN, Eparvier FG. 2010. Early observations by the GOES-13 solar extreme ultraviolet sensor (EUVS). Sol Phys 262(1): 71–115. DOI: 10.1007/s11207-009-9491-x. [NASA ADS] [CrossRef] [Google Scholar]
- Fidalgo-Merino R, Núñez M. 2011. Self-adaptive induction of regression trees. IEEE Trans Pattern Anal Mach Intell 33(8): 1659–1672. DOI: 10.1109/TPAMI.2011.19. [CrossRef] [Google Scholar]
- García-Rigo A, Núñez M, Qahwaji R, Ashamari O, Jiggens P, Pérez G, Hernández-Pajares M, Hilgers A. 2016. Prediction and warning system of SEP events and solar flares for risk estimation in space launch operations. J Space Weather Space Clim 6: A28. DOI: 10.1051/swsc/2016021. [Google Scholar]
- Hoff JL, Townsend LW, Zapp EN. 2004. Interplanetary crew doses and dose equivalents: Variations among different bone marrow and skin sites. Adv Space Res 34(6): 1347–1352. DOI: 10.1016/j.asr.2003.08.056. [CrossRef] [Google Scholar]
- Jain R, Aggarwal M, Kulkarni P. 2010. Relationship between CME dynamics and solar flare plasma. Res Astron Astrophys 10: 473. DOI: 10.1088/1674-4527/10/5/007. [CrossRef] [Google Scholar]
- Kahler SW, Cliver EW, Ling AG. 2007. Validating the proton prediction system (PPS). J Atmos Sol Terr Phys 69(1–2): 43–49. DOI: 10.1016/j.jastp.2006.06.009. [Google Scholar]
- Kahler SW, Ling A. 2015. Dynamic SEP event probability forecasts. Space Weather 13: 665–675. DOI: 10.1002/2015SW001222. [CrossRef] [Google Scholar]
- Kozarev KA, Raymond JC, Lobzin VV, Hammer M. 2015. Properties of a coronal shock wave as a driver of early SEP acceleration. Astrophys J 799: 2. DOI: 10.1088/0004-637x/799/2/167. [NASA ADS] [CrossRef] [Google Scholar]
- Kraaikamp E, Verbeeck C. 2015. Solar Demon – An approach to detecting flares, dimmings, and EUV waves on SDO/AIA images. J Space Weather Space Clim 5: A18. DOI: 10.1051/swsc/2015019. [CrossRef] [Google Scholar]
- Lario D, Raouafi NE, Kwon R-Y, Zhang J, Gómez-Herrero R, Dresing N, Riley P. 2014. The Solar Energetic Particle event on 2013 April 11: An Investigation of its solar origin and longitudinal spread. Astrophys J 797(1): 2014. DOI: 10.1088/0004-637X/797/1/8. [NASA ADS] [CrossRef] [Google Scholar]
- Laurenza M, Cliver EW, Hewitt J, Storini M, Ling AG, Balch CC, Kaiser ML. 2009. A technique for short-term warning of solar energetic particle events based on flare location, flare size, and evidence of particle escape. Space Weather 7: S04008. DOI: 10.1029/2007SW000379. [NASA ADS] [CrossRef] [Google Scholar]
- Laurenza M, Alberti T, Cliver EW. 2018. A short-term ESPERTA-based forecast tool for moderate-to-extreme solar proton events. Astrophys J 857(2): 107. DOI: 10.3847/1538-4357/aab712. [CrossRef] [Google Scholar]
- Marsh M, Dalla S, Dierckxsens M, Laitinen T, Crosby N. 2014. SPARX: A modeling system for Solar Energetic Particle Radiation Space Weather forecasting. Space Weather 13: 6. DOI: 10.1002/2014SW001120. [Google Scholar]
- Miteva R, Samwel SW, Costa-Duarte MV. 2018. The wind/EPACT Proton Event Catalog (1996–2016). Sol Phys 293: 27. DOI: 10.1007/s11207-018-1241-5. [CrossRef] [Google Scholar]
- Neupert W. 1968. Comparison of solar X-ray line emission with microwave emission during flares. Astrophys J 153: pL59. DOI: 10.1086/180220. [Google Scholar]
- Núñez M. 2011. Predicting solar energetic proton events (E > 10 MeV). Space Weather 9: S07003. DOI: 10.1029/2010SW000640. [Google Scholar]
- Núñez M. 2015. Real-time prediction of the occurrence and intensity of the first hours of > 100 MeV solar energetic proton events. Space Weather 13: 807–819. DOI: 10.1002/2015SW001256. [CrossRef] [Google Scholar]
- Núñez M. 2018. Predicting well-connected SEP events from observations of solar soft X-rays and near-relativistic electrons. J Space Weather Space Clim 8: A36. DOI: 10.1051/swsc/2018023. [CrossRef] [Google Scholar]
- Núñez M, Nieves-Chinchilla T, Pulkkinen A. 2016. Prediction of shock arrival times from CME and flare data. Space Weather 14: 544–562. DOI: 10.1002/2016SW001361. [CrossRef] [Google Scholar]
- Núñez M, Reyes-Santiago PJ, Malandraki OE. 2017. Real-time prediction of the occurrence of GLE events. Space Weather 15(7): 861–873. DOI: 10.1002/2017SW001605. [CrossRef] [Google Scholar]
- Núñez M, Klein K-L, Heber B, Malandraki OE, Zucca P, Labrens J, Reyes P, Kuehl P, Pavlos E. 2018. HESPERIA forecasting tools: Real-time and post-event. In: Solar particle radiation storms forecasting and analysis, Malandraki O, Crosby N (Eds.), Springer International Publishing AG, Berlin, Germany. DOI: 10.1007/978-3-319-60051-2_7. [Google Scholar]
- Papaioannou A, Malandraki OE, Dresing N, Heber B, Klein K-L, et al. 2014. The SEPServer catalogues of solar energetic particle events at 1 AU based on STEREO recordings: 2007–2012. A&A 569(2014): A96. DOI: 10.1051/0004-6361/201323336. [CrossRef] [EDP Sciences] [Google Scholar]
- Papaioannou A, Anastasiadis A, Sandberg I, Georgoulis MK, Tsiropoula G, Tziotziou K, Jiggens P, Hilgers A. 2015. A novel forecasting system for solar particle events and flares (FORSPEF). J Phys: Conf Ser 632: 012075. DOI: 10.1088/1742-6596/632/1/012075. [CrossRef] [Google Scholar]
- Park J, Innes DE, Bucik R, Moon Y-J, Kahler SW. 2015. Study of solar energetic particle associations with coronal extreme-ultraviolet waves, July 2015. Astrophys J 808(1): 3. DOI: 10.1088/0004-637X/808/1/3. [NASA ADS] [CrossRef] [Google Scholar]
- Pick M, Vilmer N. 2008. Sixty-five years of solar radioastronomy: Flares, coronal mass ejections and Sun-Earth connection. Astron Astrophys Rev 16(1): 1–153. DOI: 10.1007/s00159-008-0013-x. [CrossRef] [Google Scholar]
- Posner A. 2007. Up to 1-hour forecasting of radiation hazards from solar energetic ion events with relativistic electrons. Space Weather 5: S05001. DOI: 10.1029/2006SW000268. [NASA ADS] [CrossRef] [Google Scholar]
- Quinlan JR. 1992. Learning with continuous classes. In: Proceedings 5th Australian Joint Conference on Artificial Intelligence, Hobart, 16–18 November, pp. 343–348. [Google Scholar]
- Reeves KK, Moats SJ. 2010. Relating coronal mass ejection kinematics and thermal energy release to flare emissions using a model of solar eruptions. Astrophys J 712: 429. DOI: 10.1088/0004-637X/712/1/429. [Google Scholar]
- Richardson IG, von Rosenvinge TT, Cane HV, Christian ER, Cohen CMS, Labrador AW, Leske RA, Mewaldt RA, Wiedenbeck ME, Stone EC. 2014. >25 MeV proton events observed by the high energy telescopes on the STEREO A and B spacecraft and/or at Earth during the first seven years of the STEREO mission. Sol Phys 289: 3059–3107. DOI: 10.1007/s11207-014-0524-82014. [NASA ADS] [CrossRef] [Google Scholar]
- Shea MA, Smart DF. 2012. Space weather and the ground-level solar proton events of the 23rd solar cycle. Space Sci Rev 171: 161–188. DOI: 10.1007/s11214-012-9923-z. [Google Scholar]
- St. Cyr OCA, Posner A, Burkepile JT. 2017. Solar energetic particle warnings from a coronagraph. Space Weather 15: 1. DOI: 10.1002/2016SW001545. [CrossRef] [Google Scholar]
- Thakur N, Gopalswamy N, Xie H, Mäkelä P, Yashiro S, Akiyama S, Davila JM. 2014. Ground level enhancement in the 2014 January 6 solar energetic particle event. Astrophys J Lett 790(1): L13. DOI: 10.1088/2041-8205/790/1/L13. [Google Scholar]
- Temmer M, Veronig AM, Kontar EP, Krucker S, Vršnak B. 2010. Combined STEREO/RHESSI study of coronal mass ejection acceleration and particle acceleration in solar flares. Astrophys J 712: 1410–1420. DOI: 10.1088/0004-637x/712/2/1410. [CrossRef] [Google Scholar]
- Tsagouri I, Belehaki A, Bergeot N, Cid C, Delouille V, et al. 2013. Progress in space weather modeling in an operational environment. J Space Weather Space Clim 3: A17. DOI: 10.1051/swsc/2013037. [CrossRef] [Google Scholar]
- Wang Y, Witten I. 1997. Inducing model trees for continuous classes. In: Proceedings of Poster Papers, 9th European Conference on Machine Learning, Prague, April 23–25pp. 128–137. [Google Scholar]
- Warmuth A, Holman GD, Dennis BR, Mann G, Aurass H, Milligan RO. 2009. Rapid changes of electron acceleration characteristics at the end of the impulsive phase of an X-class solar flare. Astrophys J 699: 917–922. DOI: 10.1088/0004-637X/699/1/917. [Google Scholar]
- Winter LM, Ledbetter K. 2015. Type II and Type III radio bursts and their correlation with solar energetic proton events. Astrophys J 809(1): 105. DOI: 10.1088/0004-637X/809/1/105. [Google Scholar]
- Yashiro S, Gopalswamy N. 2009. Statistical relationship between solar flares and coronal mass ejections. In: Proceedings IAU Symposium, 257. Gopalswamy N, Webb DF, (Eds.), Universal Heliophysical Processes, Cambridge Univ. Press, London, UK, pp. 233–243. DOI: 10.1017/S1743921309029342. [Google Scholar]
- Zucca P, Núñez M, Klein K. 2017. Exploring the potential of microwave diagnostics in SEP forecasting: The occurrence of SEP events. J Space Weather Space Clim 7: A13. DOI: 10.1051/swsc/2017011. [CrossRef] [EDP Sciences] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.