Open Access
Issue |
J. Space Weather Space Clim.
Volume 9, 2019
|
|
---|---|---|
Article Number | A38 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/swsc/2019036 | |
Published online | 25 October 2019 |
- Aschwanden MJ. 2010. Image processing techniques and feature recognition in solar physics. Solar Phys 262: 235–275. DOI: 10.1007/s11207-009-9474-y. [NASA ADS] [CrossRef] [Google Scholar]
- Barra V, Delouille V, Hochedez J-F. 2008. Segmentation of extreme ultraviolet solar images via multichannel fuzzy clustering. Adv Space Res 42(5): 917–925. DOI: 10.1016/j.asr.2007.10.021. [NASA ADS] [CrossRef] [Google Scholar]
- Benkhalil A, Zharkova V, Zharkov S, Ipson S. 2006. Active region detection and verification with the solar feature catalogue. Solar Phys 235(1): 87–106. DOI: 10.1007/s11207-006-0023-7. [NASA ADS] [CrossRef] [Google Scholar]
- Bloomfield DS, Higgins PA, McAteer RTJ, Gallagher PT. 2012. Toward reliable benchmarking of solar flare forecasting methods. Astrophys J Lett 747: L41. DOI: 10.1088/2041-8205/747/2/L41. [Google Scholar]
- Boerner PF, Testa P, Warren H, Weber MA, Schrijver CJ. 2014. Photometric and thermal cross-calibration of solar EUV instruments. Solar Phys 289(6): 2377–2397. DOI: 10.1007/s11207-013-0452-z. [Google Scholar]
- Borda RAF, Mininni PD, Mandrini CH, Gómez DO, Bauer OH, Rovira MG. 2002. Automatic solar flare detection using neural network techniques. Solar Phys 206(2): 347–357. DOI: 10.1023/A:1015043621346. [NASA ADS] [CrossRef] [Google Scholar]
- Bratsolis E, Sigelle M. 1998. Solar image segmentation by use of mean field fast annealing. Astron Astrophys Suppl 131: 371–375. DOI: 10.1051/aas:1998274. [CrossRef] [Google Scholar]
- Breiman L. 2001. Random forests. Mach Learn 45(1): 5–32. DOI: 10.1023/A:1010933404324. [Google Scholar]
- Caballero C, Aranda M. 2013. A comparative study of clustering methods for active region detection in solar EUV images. Solar Phys 283(2): 691–717. DOI: 10.1007/s11207-013-0239-2. [CrossRef] [Google Scholar]
- Curto J, Blanca M, Martínez E. 2008. Automatic sunspots detection on full-disk solar images using mathematical morphology. Solar Phys 250(2): 411–429. DOI: 10.1007/s11207-008-9224-6. [NASA ADS] [CrossRef] [Google Scholar]
- De Visscher R, Delouille V, Dupont P, Deledalle C-A. 2015. Supervised classification of solar features using prior information. J Space Weather Space Clim 5: A34. DOI: 10.1051/swsc/2015033. [CrossRef] [Google Scholar]
- Delouille V, Hofmeister SJ, Reiss MA, Mampaey B, Temmer M, Veronig A. 2018. Chapter 15 – Coronal holes detection using supervised classification. In: Machine learning techniques for space weather, Camporeale E, Wing S, Johnson JR (Eds.), Elsevier, Amsterdam. pp. 365–395. ISBN 978-0-12-811788-0. DOI: 10.1016/B978-0-12-811788-0.00015-9 [CrossRef] [Google Scholar]
- Dempster AP, Laird NM, Rubin DB. 1977. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc: Ser B (Methodological) 39(1): 1–22. [Google Scholar]
- Dudok de Wit T. 2006. Fast segmentation of solar extreme ultraviolet images. Solar Phys 239: 519–530. DOI: 10.1007/s11207-006-0140-3. [NASA ADS] [CrossRef] [Google Scholar]
- Fleiss JL, Cohen J. 1973. The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Edu Psychol Meas 33(3): 613–619. DOI: 10.1177/001316447303300309. [CrossRef] [Google Scholar]
- Fuller N, Aboudarham J, Bentley RD. 2005. Filament recognition and image cleaning on meudon Hα spectroheliograms. Solar Phys 227: 61–73. DOI: 10.1007/s11207-005-8364-1. [CrossRef] [Google Scholar]
- Harvey JW, Hill F, Hubbard RP, Kennedy JR, Leibacher JW, et al.. 1996. The Global Oscillation Network Group (GONG) Project. Science 272(5266): 1284–1286. DOI: 10.1126/science.272.5266.1284. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Higgins PA, Gallagher PT, McAteer RTJ, Bloomfield DS. 2011. Solar magnetic feature detection and tracking for space weather monitoring. Adv Space Res 47(12): 2105–2117. DOI: 10.1016/j.asr.2010.06.024. [Google Scholar]
- Hurlburt N, Cheung M, Schrijver C, Chang L, Freeland S, et al. 2012. Heliophysics event knowledgebase for the solar dynamics observatory (SDO) and beyond. Solar Phys 275(1): 67–78. DOI: 10.1007/s11207-010-9624-2. [NASA ADS] [CrossRef] [Google Scholar]
- Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. 2008. Random survival forests. Ann Appl Stat 2(3): 841–860. DOI: 10.1214/08-AOAS169. [CrossRef] [Google Scholar]
- Koolen WM, de Rooij S. 2013. Universal codes from switching strategies. IEEE Trans Inf Theory 59(11): 7168–7185. DOI: 10.1109/TIT.2013.2273353. [CrossRef] [Google Scholar]
- Krista LD, Gallagher PT. 2009. Automated coronal hole detection using local intensity thresholding techniques. Solar Phys 256: 87–100. DOI: 10.1007/s11207-009-9357-2. [NASA ADS] [CrossRef] [Google Scholar]
- Kucuk A, Banda JM, Angryk RA. 2017. Solar event classification using deep convolutional neural networks. In: Artificial intelligence and soft computing, 118–130, Rutkowski L, Korytkowski M, Scherer R, Tadeusiewicz R, Zadeh LA, Zurada JM (Eds.) Springer International Publishing, Cham. ISBN 978-3-319-59063-9. [Google Scholar]
- Landis JR, Koch GG. 1977. The measurement of observer agreement for categorical data. Biometrics 33(1): 159–174. DOI: 10.2307/2529310. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Martens PCH, Attrill GDR, Davey AR, Engell A, Farid S, et al. 2012. Computer vision for the solar dynamics observatory (SDO). Solar Phys 275(1): 79–113. DOI: 10.1007/s11207-010-9697-y. [CrossRef] [Google Scholar]
- McAteer RTJ, Gallagher PT, Ireland J. 2005. Statistics of active region complexity: A large-scale fractal dimension survey. Astrophys J 631(1): 628. DOI: 10.1086/432412. [NASA ADS] [CrossRef] [Google Scholar]
- O’Dwyer B, Del Zanna G, Mason HE, Weber MA, Tripathi D. 2010. SDO/AIA response to coronal hole, quiet Sun, active region, and flare plasma. Astron Astrophys 521: A21. DOI: 10.1051/0004-6361/201014872. [CrossRef] [EDP Sciences] [Google Scholar]
- Olmedo O, Zhang J, Wechsler H, Poland A, Borne K. 2008. Automatic detection and tracking of coronal mass ejections in coronagraph time series. Solar Phys 248(2): 485–499. DOI: 10.1007/s11207-007-9104-5. [Google Scholar]
- Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, et al. 2011 Oct. Scikit-learn: Machine learning in Python. J Mach Learn Res 12: 2825–2830. [Google Scholar]
- Preminger DG, Walton SR, Chapman GA. 2001. Solar feature identification using contrasts and contiguity. Solar Phys 202(1): 53–62. DOI: 10.1023/A:1011896413891. [NASA ADS] [CrossRef] [Google Scholar]
- Qu M, Shih FY, Jing J, Wang H. 2005. Automatic solar filament detection using image processing techniques. Solar Phys 228(1): 119–135. DOI: 10.1007/s11207-005-5780-1. [CrossRef] [Google Scholar]
- Redmon RJ, Seaton DB, Steenburgh R, He J, Rodriguez JV. 2018. September 2017’s geoeffective space weather and impacts to caribbean radio communications during hurricane response. Space Weather 16(9): 1190–1201. DOI: 10.1029/2018SW001897. [NASA ADS] [CrossRef] [Google Scholar]
- Rigler E, Hill SM, Reinard AA, Steenburgh RA. 2012. Solar thematic maps for space weather operations. Space Weather 10(8): S08009. DOI: 10.1029/2012SW000780. [CrossRef] [Google Scholar]
- Seaton DB, Darnel JM. 2018. Observations of an eruptive solar flare in the extended EUV solar corona. Astrophys J Lett 852: L9. DOI: 10.3847/2041-8213/aaa28e. [NASA ADS] [CrossRef] [Google Scholar]
- Sittler EC, Guhathakurta M. 1999. Semiempirical two-dimensional magnetohydrodynamic model of the solar corona and interplanetary medium. Astrophys J 523(2): 812. DOI: 10.1086/307742. [Google Scholar]
- Verbeeck C, Delouille V, Mampaey B, De Visscher R. 2014. The SPoCA-suite: Software for extraction, characterization, and tracking of active regions and coronal holes on EUV images. Astron Astrophys 561: A29. DOI: 10.1051/0004-6361/201321243. [CrossRef] [EDP Sciences] [Google Scholar]
- Zharkova VV, Schetinin V. 2005. Filament recognition in solar images with the neural network technique. Solar Phys 228(1): 137–148. DOI: 10.1007/s11207-005-5622-1. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.