Open Access
Research Article
J. Space Weather Space Clim.
Volume 9, 2019
Article Number A39
Number of page(s) 14
Published online 25 October 2019
  • Bermejo-Pantaleón D, Funke B, López-Puertas M, García-Comas M, Stiller GP, et al. 2011. Global observations of thermospheric temperature and nitric oxide from MIPAS spectra at 5.3 μm. J Geophys Res 116: A10313. DOI: 10.1029/2011JA016752. [CrossRef] [Google Scholar]
  • Bessarab FS, Korenkov YuN, Klimenko MV, Klimenko VV, Karpov IV, Ratovsky KG, Chernigovskaya MA. 2012. Modeling the effect of sudden stratospheric warming within the thermosphere-ionosphere system. J Atmos Sol-Terr Phys 90–91: 77–85. DOI: 10.1016/j.jastp.2012.09.005. [CrossRef] [Google Scholar]
  • Butler AH. 2015. Defining sudden stratospheric warmings. Bull Am Meteorol Soc 96(11): 1913–1928. DOI: 10.1175/BAMS-D-13-00173.1. [CrossRef] [Google Scholar]
  • Chau JL, Goncharenko LP, Fejer BG, Liu HL. 2012. Equatorial and low latitude ionospheric effects during sudden stratospheric warming events. Space Sci Rev 168: 385–417. DOI: 10.1007/s11214-011-9797-5. [CrossRef] [Google Scholar]
  • Fejer BG, Tracy BD, Olson ME, Chau JL. 2011. Enhanced lunar semidiurnal equatorial vertical plasma drifts during sudden stratospheric warmings. Geophys Res Lett 38: L21104. DOI: 10.1029/2011GL049788. [CrossRef] [Google Scholar]
  • Fischer H, Birk M, Blom C, Carli B, Carlotti M, et al. 2008. MIPAS: An instrument for atmospheric and climate research. Atmos Chem Phys 8: 2151–2188. DOI: 10.5194/acp-8-2151-2008. [CrossRef] [Google Scholar]
  • Forbes JM, Palo SE, Zhang X. 2000. Variability of the ionosphere. J Atmos Sol-Terr Phys 62: 685–693. DOI: 10.1016/S1364-6826(00)00029-8. [CrossRef] [Google Scholar]
  • Forbes JM, Zhang X. 2012. Lunar tide amplification during the January 2009 stratosphere warming event: Observations and theory. J Geophys Res 117: A12312. DOI: 10.1029/2012JA017963. [Google Scholar]
  • Fuller-Rowell T, Wang H, Akmaev R, Wu F, Fang T-W, Iredell M, Richmond A. 2011a. Forecasting the dynamic and electrodynamic response to the January 2009 sudden stratospheric warming. Geophys Res Lett 38: L13102. DOI: 10.1029/2011GL047732. [Google Scholar]
  • Fuller-Rowell T, Akmaev R, Wu F, Fedrizzi M, Viereck RA, Wang H. 2011b. Did the January 2009 sudden stratospheric warming cool or warm the thermosphere? Geophys Res Lett 38: L18104. DOI: 10.1029/2011GL048985. [Google Scholar]
  • Funke B, Lypez-Puertas M, Bermejo-Pantaleyn D, Garcнa-Comas M, Stiller GP, von Clarmann T, Kiefer M, Linden A. 2010. Evidence for dynamical coupling from the lower atmosphere to the thermosphere during a major stratospheric warming. Geophys Res Lett 37: L13803. DOI: 10.1029/2010GL043619. [CrossRef] [Google Scholar]
  • Funke B, Ball W, Bender S, Gardini A, Harvey VL, et al. 2017. HEPPA-II model–measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008–2009. Atmos Chem Phys 17: 3573–3604. DOI: 10.5194/acp-17-3573-2017. [NASA ADS] [CrossRef] [Google Scholar]
  • Goncharenko LP, Coster AJ, Chau JL, Valladares CE. 2010a. Impact of sudden stratospheric warmings on equatorial ionization anomaly. J Geophys Res 115: A00G07. DOI: 10.1029/2010JA015400. [CrossRef] [Google Scholar]
  • Goncharenko LP, Chau JL, Liu H-L, Coster AJ. 2010b. Unexpected connections between the stratosphere and ionosphere. Geophys Res Lett 37: L10101. DOI: 10.1029/2010GL043125. [CrossRef] [Google Scholar]
  • Goncharenko LP, Coster AJ, Zhang S-R, Erickson PJ, Benkevitch L, et al. 2018. Deep ionospheric hole created by sudden stratospheric warming in the nighttime ionosphere. J Geophys Res 123: 7621–7633. DOI: 10.1029/2018JA025541. [CrossRef] [Google Scholar]
  • Jin H, Miyoshi Y, Pancheva D, Mukhtarov P, Fujiwara H, Shinagawa H. 2012. Response of migrating tides to the stratospheric sudden warming in 2009 and their effects on the ionosphere studied by a whole atmosphere-ionosphere model GAIA with COSMIC and TIMED/SABER observations. J Geophys Res 117: A10323. DOI: 10.1029/2012JA017650. [Google Scholar]
  • Karpov IV, Bessarab FS, Borchevkina OP, Artemenko KA, Klopova AI. 2018. Modeling of the of mesospheric IGV influence on planetary and tidal waves in the thermosphere and ionosphere during the sudden stratospheric warming of 2009. Geomagn Aeron 58(4): 526–539. DOI: 10.1134/S0016793218040084 [CrossRef] [Google Scholar]
  • Klimenko MV, Klimenko VV, Bryukhanov VV. 2007. Numerical modeling of the equatorial electrojet UT-variation on the basis of the model GSM TIP. Adv Radio Sci 5: 385–392. DOI: 10.5194/ars-5-385-2007. [CrossRef] [Google Scholar]
  • Klimenko MV, Klimenko VV, Bessarab FS, Korenkov YN, Liu H, Goncharenko LP, Tolstikov MV. 2015. Study of the thermospheric and ionospheric response to the 2009 sudden stratospheric warming using TIME-GCM and GSM TIP models – first results. J Geophys Res 120: 7873–7888. DOI: 10.1002/2014JA020861. [CrossRef] [Google Scholar]
  • Klimenko MV, Bessarab FS, Sukhodolov TV, Klimenko VV, Korenkov YN, et al. 2018. Ionospheric effects of the sudden stratospheric warming in 2009: Results of simulation with the first version of the EAGLE model. Russ J Phys Chem B 12(4): 760–770. DOI: 10.1134/S1990793118040103. [CrossRef] [Google Scholar]
  • Klimenko VV, Klimenko MV, Bessarab FS, Sukhodolov TV, Rozanov EV. 2019. The dependence of four-peak longitudinal structure of the tropical electric field on the processes in the lower atmosphere and geomagnetic field configuration. Adv Space Res 64(10): 1854–1864. DOI: 10.1016/j.asr.2019.06.029. [CrossRef] [Google Scholar]
  • Korenkov YuN, Klimenko VV, Forster M, Bessarab FS, Surotkin VA. 1998. Calculated and observed ionospheric parameters for Magion-2 passage above EISCAT on July 31 1990. J Geophys Res 103(A7): 14697–14710. DOI: 10.1029/98JA00210. [CrossRef] [Google Scholar]
  • Korenkov YN, Klimenko VV, Klimenko MV, Bessarab FS, Korenkova NA, et al. 2012. The global thermospheric and ionospheric response to the 2008 minor sudden stratospheric warming event. J Geophys Res 117: A10309. DOI: 10.1029/2012JA018018. [CrossRef] [Google Scholar]
  • Labitzke K, Kunze M. 2009. On the remarkable Arctic winter in 2008/2009. J Geophys Res 114: D00I02. DOI: 10.1029/2009JD012273. [CrossRef] [Google Scholar]
  • Liu H-L, Roble RG. 2002. A study of a self-generated stratospheric sudden warming and its mesospheric-lower thermospheric impacts using the coupled TIME-GCM/CCM3. J Geophys Res 107(D23): 4695. DOI: 10.1029/2001JD001533. [Google Scholar]
  • Liu H, Doornbos E, Yamamoto M, Tulasi Ram S. 2011. Strong thermospheric cooling during the 2009 major stratosphere warming. Geophys Res Lett 38: L12102. DOI: 10.1029/2011GL047898. [Google Scholar]
  • Liu H, Jin H, Miyoshi Y, Fujiwara H, Shinagawa H. 2013. Upper atmosphere response to stratosphere sudden warming: Local time and height dependence simulated by GAIA model. Geophys Res Lett 40: 635–640. DOI: 10.1002/grl.50146. [CrossRef] [Google Scholar]
  • Liu H, Miyoshi Y, Miyahara S, Jin H, Fujiwara H, Shinagawa H. 2014. Thermal and dynamical changes of the zonal mean state of the thermosphere during the 2009 SSW: GAIA simulations. J Geophys Res 119: 6784–6791. DOI: 10.1002/2014JA020222. [CrossRef] [Google Scholar]
  • Meraner K, Schmidt H. 2016. Transport of nitrogen oxides through the winter mesopause in HAMMONIA. J Geophys Res 121: 2556–2570. DOI: 10.1002/2015JD024136. [Google Scholar]
  • Namgaladze AA, Korenkov YuN, Klimenko VV, Karpov IV, Bessarab FS, Surotkin VA, Glushenko TA, Naumova NM. 1988. Global model of the thermosphere-ionosphere-protonosphere system. Pure Appl Geophys (PAGEOPH) 127(2/3): 219–254. DOI: 10.1007/978-3-0348-6532-6_3. [CrossRef] [Google Scholar]
  • Pancheva D, Mukhtarov P. 2011. Stratospheric warmings: The atmosphere–ionosphere coupling paradigm. J Atmos Sol-Terr Phys 73(13): 1697–1702. DOI: 10.1016/j.jastp.2011.03.006. [CrossRef] [Google Scholar]
  • Pedatella NM, Liu H-L. 2013. The influence of atmospheric tide and planetary wave variability during sudden stratosphere warmings on the low latitude ionosphere. J Geophys Res Space Phys 118: 5333–5347. DOI: 10.1002/jgra.50492. [CrossRef] [Google Scholar]
  • Pedatella NM, Liu H-L, Richmond AD, Maute A, Fang T-W. 2012. Simulations of solar and lunar tidal variability in the mesosphere and lower thermosphere during sudden stratosphere warmings and their influence on the low-latitude ionosphere. J Geophys Res 117: A08326. DOI: 10.1029/2012JA017858. [CrossRef] [Google Scholar]
  • Pedatella NM, Fang T-W, Jin H, Schmidt H, Chau JL, Siddiqui TA, Goncharenko L. 2016. Multimodel comparison of the ionosphere variability during the 2009 sudden stratosphere warming. J Geophys Res 121: 7204–7225. DOI: 10.1002/2016JA022859. [CrossRef] [Google Scholar]
  • Pedatella NM, Liu H-L, Marsh DR, Raeder K, Anderson JL, Chau JL, Goncharenko LP, Siddiqui TA. 2018. Analysis and hindcast experiments of the 2009 sudden stratospheric warming in WACCMX+DART. J Geophys Res 123: 3131–3153. DOI: 10.1002/2017JA025107. [CrossRef] [Google Scholar]
  • Schmidt H, Brasseur GP, Charron M, Manzini E, Giorgetta MA, Diehl T, Fomichev VI, Kinnison D, Marsh D, Walters S. 2006. The HAMMONIA chemistry climate model: Sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling. J Climate 19: 3903–3931. DOI: 10.1175/JCLI3829.1. [CrossRef] [Google Scholar]
  • Singh RP, Pallamraju D. 2015. On the latitudinal distribution of mesospheric temperatures during sudden stratospheric warming events. J Geophys Res Space Phys 120: 2926–2939. DOI: 10.1002/2014JA020355. [CrossRef] [Google Scholar]
  • Tan B, Chu X, Liu H-L, Yamashita C, Russell JM III. 2012. Zonal-mean global teleconnection from 15 to 110 km derived from SABER and WACCM. J Geophys Res 117: D10106. DOI: 10.1029/2011JD016750. [Google Scholar]
  • Vasiliev PA, Bessarab FS, Karpov IV, Klimenko VV, Klimenko MV, Sukhodolov TV, Rozanov EV. 2019. Tidal and planetary waves in the lower thermosphere and ionosphere simulated with the EAGLE model for the January 2009 sudden stratospheric warming conditions. Izv Atmos Ocean Phys 55(2): 178–187. DOI: 10.1134/S0001433819020130. [CrossRef] [Google Scholar]
  • Wang H, Fuller-Rowell TJ, Akmaev RA, Hu M, Kleist DT, Iredell MD. 2011. First simulations with a whole atmosphere data assimilation and forecast system: The January 2009 major sudden stratospheric warming. J Geophys Res 116: A12321. DOI: 10.1029/2011JA017081. [Google Scholar]
  • Yamazaki Y. 2014. Solar and lunar ionospheric electrodynamic effects during stratospheric sudden warmings. J Atmos Sol-Terr Phys 119: 138–146. DOI: 10.1016/j.jastp.2014.08.001. [CrossRef] [Google Scholar]
  • Zakharenkova I, Astafyeva E, Cherniak I. 2016. GPS and GLONASS observations of large-scale traveling ionospheric disturbances during the 2015 St. Patrick’s Day storm. J Geophys Res 121(12): 12,138–12,156. DOI: 10.1002/2016JA023332. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.