Open Access
Agora – Meeting report
Issue
J. Space Weather Space Clim.
Volume 9, 2019
Article Number A32
Number of page(s) 9
Section Agora
DOI https://doi.org/10.1051/swsc/2019031
Published online 10 September 2019
  • Business Innovation and Skills. 2015. Space weather preparedness strategy. Ref: BIS/15/457, Department for Business, Innovation and Skills, London, UK. [Google Scholar]
  • Bloomfield DS, Higgins PA, McAteer RTJ, Gallagher PT. 2012. Toward reliable benchmarking of solar flare forecasting methods. Astrophys J Lett 747(2): L41. DOI: 10.1088/2041-8205/747/2/L41. [NASA ADS] [CrossRef] [Google Scholar]
  • Copeland K. 2016. ESRAS: An Enhanced Solar Radiation Alert System, Civil Aerospace Medical Institute Federal Aviation Administration, Oklahoma City, USA. Report No. DOT/FAA/AM-16/5. [Google Scholar]
  • ECSS-E-ST-20-06C Rev. 1. 2019a. European Cooperation for Space Standardization, Space Engineering: Spacecraft charging. ESA Requirements and Standards Division, ESTEC, Noordwijk, The Netherlands. [Google Scholar]
  • ECSS-E-HB-20-06A. 2019b. European Cooperation for Space Standardization, Assessment of space worst case charging handbook, ESA Requirements and Standards Division, ESTEC, Noordwijk, The Netherlands. [Google Scholar]
  • Gonzalez-Esparza JA, Sergeeva MA, Corona-Romero P, Mejia-Ambriz JC, Gonzalez LX, De la Luz V, Aguilar-Rodriguez E, Rodriguez M, Romero-Hernandez E. 2018. Space weather events, hurricanes, and earthquakes in Mexico in September 2017. Space Weather 16(12): 2038–2051. DOI: 10.1029/2018SW001995. [CrossRef] [Google Scholar]
  • Guyader E, Rodriguez F, Ronchini R, Di Rollo S, Aragon-Angel A, et al. 2018. The Ionosphere Prediction Service for GNSS Users. International Technical Symposium on Navigation and Timing, Toulouse, France, Oct 2018. DOI: 10.31701/itsnt2018.25. [Google Scholar]
  • Halford A, Kellerman A, Garcia-Sage K, Klenzing J, Carter BA, et al. 2019. Application usability levels: A framework for tracking project product progress. J Space Weather Space Clim. DOI: 10.1051/swsc/2019030. in press. [Google Scholar]
  • Henley EM, Pope ECD. 2017. Cost-loss analysis of ensemble solar wind forecasting: Space weather use of terrestrial weather tools. Space Weather 15: 1562–1566. DOI: 10.1002/2017SW001758. [CrossRef] [Google Scholar]
  • Horne RB, Glauert SA, Meredith NP, Boscher D, Maget V, Heynderickx D, Pitchford D. 2013. Space weather impacts on satellites and forecasting the Earth’s electron radiation belts with SPACECAST. Space Weather 11: 169–186. DOI: 10.1002/swe.20023. [CrossRef] [Google Scholar]
  • Jiggens P, Clavie C, Evans H, O’Brien TP, Witasse O, et al. 2019. In situ data and effect correlation during September 2017 solar particle event. Space Weather 17: 99–117. DOI: 10.1029/2018SW00193. [CrossRef] [Google Scholar]
  • Kraaikamp E, Verbeek C. 2015. Solar Demon – an approach to detecting flares, dimmings, and EUV waves on SDO/AIA images. J Space Weather Space Clim 5: A18. DOI: 10.1051/swsc/2015019. [CrossRef] [Google Scholar]
  • Krausmann E, Andersson E, Russell T, Murtagh W. 2015. Space weather and rail: Findings and outlook. Joint Research Council Science and Policy Reports, London, UK, 16–17 September. DOI: 10.2788/211456. [Google Scholar]
  • Murray SA. 2018. The importance of ensemble techniques for operational space weather forecasting. Space Weather 16: 777–783. DOI: 10.1029/2018sw001861. [CrossRef] [Google Scholar]
  • NASA Technical Handbook. 2011. Mitigating in-space charging effects – A guideline. NASA Technical Handbook, NASA-HDBK-4002A, National Aeronautics and Space Administration, Washington, DC, USA. [Google Scholar]
  • Odstrcil D. 2003. Modeling 3-D solar wind structure. Adv Space Res 32: 497–506. DOI:10.1016/S0273-1177(03)00332-6. [NASA ADS] [CrossRef] [Google Scholar]
  • Oughton EJ, Skelton A, Horne RB, Thomson AWP, Gaunt CT. 2017. Quantifying the daily economic impact of extreme space weather due to failure in electricity transmission infrastructure. Space Weather 15: 65–83. DOI: 10.1002/2016SW001491. [CrossRef] [Google Scholar]
  • Pomoell J, Poedts S. 2018. EUHFORIA: European heliospheric forecasting information asset. J Space Weather Space Clim 8: 35. DOI: 10.1051/swsc/2018020. [CrossRef] [EDP Sciences] [Google Scholar]
  • Redmon RJ, Seaton DB, Steenburgh R, He J, Rodriguez JV. 2018. September 2017’s geoeffective space weather and impacts to Caribbean radio communications during hurricane response. Space Weather 16: 9. DOI: 10.1029/2018SW001897. [NASA ADS] [CrossRef] [Google Scholar]
  • Riley P, Baker D, Liu YD, Verronen P, Singer H, Gudel M. 2018a. Extreme space weather events: From cradle to grave. Space Sci Rev 214: 21. DOI: 10.1007/s11214-017-0456-3. [NASA ADS] [CrossRef] [Google Scholar]
  • Riley P, Mays ML, Andries J, Amerstorfer T, Biesecker D, et al. 2018b. Forecasting the arrival time of coronal mass ejections: analysis of the CCMC CME Scoreboard. Space Weather 16: 9. DOI: 10.1029/2018SW001962. [NASA ADS] [CrossRef] [Google Scholar]
  • Robbrecht E, Berghmans D, Van der Linden RAM. 2009. Automated LASCO CME catalog for solar cycle 23: Are CMEs scale invariant? Astrophys J 691: 2. DOI: 10.1088/0004-637X/691/2/1222. [NASA ADS] [CrossRef] [Google Scholar]
  • Schrijver CJ, Kauristie K, Aylward AD, Denardini CM, Gibson SE, et al. 2015. Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS. Adv Space Res 55: 2745–2807. DOI: 10.1016/j.asr.2015.03.023. [NASA ADS] [CrossRef] [Google Scholar]
  • Sharpe MA, Murray SA. 2017. Verification of space weather forecasts issued by the Met Office Space Weather Operations Centre. Space Weather 15: 1383–1395. DOI: 10.1002/2017SW001683. [CrossRef] [Google Scholar]
  • Verbeke C, Mays ML, Temmer M, Bingham S, Steenburgh R, et al. 2018. Benchmarking CME arrival time and impact: progress on metadata, metrics, and events. Space Weather 17: 6–26. DOI: 10.1029/2018SW002046. [NASA ADS] [CrossRef] [Google Scholar]
  • White House. 2018. A report by the Space Weather Operations, Research, and Mitigation Subcommittee, Committee on Homeland and National Security of the National Science and Technology Council. Space Weather Phase 1 Benchmarks. The White House, USA. [Google Scholar]
  • White House. 2019. Product of the Space Weather Operations, Research, and Mitigation Working Group, Space Weather, Security, and Hazards Subcommittee, Committee on Homeland and National Security of the National Science and Technology Council. National Space Weather Strategy and Action Plan. The White House, USA. [Google Scholar]
  • World Meteorological Organisation. 2016. Four-year Plan for WMO Activities Related to Space Weather 2016–2019, Geneva, Switzerland. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.