Open Access
J. Space Weather Space Clim.
Volume 9, 2019
Article Number A33
Number of page(s) 17
Published online 26 September 2019
  • Byrne JP, Maloney SA, Mcateer RTJ, Refojo JM, Gallagher PT. 2010. Propagation of an Earth-directed coronal mass ejection in three dimensions. Nat. Commun. 1(6): 74. [Google Scholar]
  • Chané E, Jacobs C, Holst BVD, Poedts S, Kimpe D. 2005. On the effect of the initial magnetic polarity and of the background wind on the evolution of CME shocks. A&A 432(1): 331–339. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Chané E, Holst BVD, Jacobs C, Poedts S, Kimpe D. 2006. Inverse and normal coronal mass ejections: Evolution up to 1 AU. A&A 447(2): 727–733. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Crooker NU, Larson DE, Kahler SW, Lamassa SM, Spence HE. 2003. Suprathermal electron isotropy in high-beta solar wind and its role in heat flux dropouts. Geophys Res Lett 30(12): 5. [Google Scholar]
  • Davis CJ, Davies JA, Lockwood M, Rouillard AP, Eyles CJ, Harrison RA. 2009. Stereoscopic imaging of an Earth-impacting solar coronal mass ejection: A major milestone for the STEREO mission. Geophys Res Lett 36(8): 134–150. [Google Scholar]
  • Deforest C, Howard T, Tappin J. 2011. Observations of detailed structure in the solar wind at 1 AU with STEREO/HI-2. Astrophys J 738(1): 103. [NASA ADS] [CrossRef] [Google Scholar]
  • Deforest CE, Howard TA, Mccomas DJ. 2012. Disconnecting open solar magnetic flux. Astrophys J 745(1): 36. [CrossRef] [Google Scholar]
  • Deforest CE, Howard TA, Mccomas DJ. 2013. Tracking coronal features from the low corona to Earth: A quantitative analysis of the 2008 December 12 coronal mass ejection. Astrophys J 769(769): 43. [CrossRef] [Google Scholar]
  • Feldman WC, Asbridge JR, Bame SJ, Gosling JT, Lemons DS. 1978. Characteristic electron variations across simple high-speed solar wind streams. J Geophys Res Space Phys 83(A11): 5285–5295. [CrossRef] [Google Scholar]
  • Feng X, Yang L, Xiang C, Wu ST, Zhou Y, Zhong DK. 2010. Three-dimensional solar WIND modeling from the Sun to Earth by a SIP-CESE MHD model with a six-component grid. Astrophys J 723(1): 300. [NASA ADS] [CrossRef] [Google Scholar]
  • Feng X, Zhang M, Zhou Y. 2014. A new three-dimensional solar wind model in spherical coordinates with a six-component grid. Astrophys J Suppl 214(1): 6. [NASA ADS] [CrossRef] [Google Scholar]
  • Gibson SE, Fan Y. 2008. Partially ejected flux ropes: Implications for interplanetary coronal mass ejections. J Geophys Res Space Phys 113(A9): A09,103. [Google Scholar]
  • Gopalswamy N, Dal LA, Yashiro S, Akiyama S. 2009. The expansion and radial speeds of coronal mass ejections. Cent Eur Astrophys Bull 33(16): 115–124. [Google Scholar]
  • Gopalswamy N, Mäkelä P, Yashiro S, Davila JM. 2012. The relationship between the expansion speed and radial speed of CMEs confirmed using quadrature observations of the 2011 February 15 CME. Sun Geosph 7(1): 7–11. [Google Scholar]
  • Gosling JT, Koning CAD, Skoug RM, Steinberg JT, Mccomas DJ. 2004. Dispersionless modulations in low-energy solar electron bursts and discontinuous changes in the solar wind electron strahl. J Geophys Res Space Phys 109(A5): 1–12. [Google Scholar]
  • Han SM, Wu ST, Dryer M. 1988. A three-dimensional, time-dependent numerical modeling of super-sonic, super-alfvénic MHD flow. Comput Fluids 16(1): 81–103. [CrossRef] [Google Scholar]
  • Hanawa T, Mikami H, Matsumoto T. 2008. Improving shock irregularities based on the characteristics of the MHD equations. J Comput Phys 227(16): 7952–7976. [CrossRef] [Google Scholar]
  • Hess P, Jie Z. 2017. A study of the Earth-affecting CMEs of solar cycle 24. Sol Phys 292(6): 80. [CrossRef] [Google Scholar]
  • Howard TA, Deforest CE. 2012. Inner heliospheric flux rope evolution via imaging of coronal mass ejections. Astrophys J 746(1): 812–819. [NASA ADS] [CrossRef] [Google Scholar]
  • Iv WBM, Gombosi TI, Roussev I, Ridley A, Zeeuw DLD, Sokolov IV, Powell KG, Tóth G. 2004a. Modeling a space weather event from the Sun to the Earth: CME generation and interplanetary propagation. J Geophys Res Space Phys 109(A2): A02,107. [Google Scholar]
  • Iv WBM, Gombosi TI, Roussev I, Zeeuw DLD, Sokolov IV, Powell KG, Tóth G, Opher M. 2004b. Three-dimensional MHD simulation of a flux rope driven CME. J Geophys Res 109(A1): A01,102. [Google Scholar]
  • Iv WBM, Ridley AJ, Gombosi TI, Dezeeuw DL. 2006. Modeling the Sun-to-Earth propagation of a very fast CME. Adv Space Res 38(2): 253–262. [CrossRef] [Google Scholar]
  • Jacobs C, Poedts S. 2011. Models for coronal mass ejections. J Atmos Sol-Terr Phys 73(10): 1148–1155. [NASA ADS] [CrossRef] [Google Scholar]
  • Jacobs C, van der Holst B, Poedts S. 2007. Comparison between 2.5D and 3D simulations of coronal mass ejections. A&A 470(1): 359–365. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Kajdić P, Alexandrova O, Maksimovic M, Lacombe C, Fazakerley AN. 2016. Suprathermal electron strahl widths in the presence of narrow-band whistler waves in the solar wind. Astrophys J 833(2): 172. [CrossRef] [Google Scholar]
  • Kataoka R, Ebisuzaki T, Kusano K, Shiota D, Inoue S, Yamamoto TT, Tokumaru M. 2009. Three-dimensional MHD modeling of the solar wind structures associated with 13 December 2006 coronal mass ejection. J Geophys Res Space Phys 114(A10): A10,102. [Google Scholar]
  • Lago A, Schwenn R, Gonzalez W. 2003. Relation between the radial speed and theexpansion speed of coronal mass ejections. Adv Space Res 32(12): 2637–2640. [CrossRef] [Google Scholar]
  • Lugaz N. 2010. Accuracy and limitations of fitting and stereoscopic methods to determine the direction of coronal mass ejections from heliospheric imagers observations. Sol Phys 267(2): 411–429. [Google Scholar]
  • Lugaz N, Manchester WB, Roussev II, Tóth G, Gombosi TI. 2007. Numerical investigation of the homologous coronal mass ejection events from active region 9236. Astrophys J 659(1): 788–800. [NASA ADS] [CrossRef] [Google Scholar]
  • Lugaz N, Downs C, Shibata K, Roussev II, Asai A, Gombosi T. 2011. Numerical investigation of a coronal mass ejection from an anemone active region: Reconnection and deflection of the 2005 August 22 eruption. Astrophys J 738(2): 1161–1166. [Google Scholar]
  • Mäkelä P, Gopalswamy N, Yashiro S. 2016. The radial speed-expansion speed relation for Earth-directed CMEs. SpaceWeather 14: 368–378. [Google Scholar]
  • Mccomas DJ, Gosling JT, Phillips JL, Bame SJ, Luhmann JG, Smith EJ. 1989. Electron heat flux dropouts in the solar wind-evidence for interplanetary magnetic field reconnection. J Geophys Res Space Phys 94(A6): 6907–6916. [Google Scholar]
  • Odstrćil D, Pizzo VJ. 1999a. Three dimensional propagation of coronal mass ejections (CMEs) in a structured solar wind flow: 1. CME launched within the streamer belt. J Geophys Res Space Phys 104: 483–492. [CrossRef] [Google Scholar]
  • Odstrćil D, Pizzo VJ. 1999b. Three dimensional propagation of coronal mass ejections (CMEs) in a structured solar wind flow: 2. CME launched adjacent to the streamer belt. J Geophys Res Space Phys 104: 493–504. [NASA ADS] [CrossRef] [Google Scholar]
  • Odstrćil D, Pizzo VJ, Arge CN. 2005. Propagation of the 12 May 1997 interplanetary coronal mass ejection in evolving solar wind structures. J Geophys Res Space Phys 110(A2): A02,106. [Google Scholar]
  • Owens MJ, Crooker NU, Schwadron NA. 2008. Suprathermal electron evolution in a Parker spiral magnetic field. J Geophys Res Space Phys 113(A11): 1–8. [Google Scholar]
  • Parker EN. 1963. Interplanetary dynamical processes, Interscience Publishers, New York, NY. [Google Scholar]
  • Phillips JL, Gosling JT, Mccomas DJ, Bame SJ, Gary SP, Smith EJ. 2012. Anisotropic thermal electron distributions in the solar wind. J Geophys Res Space Phys 94(A6): 6563–6579. [CrossRef] [Google Scholar]
  • Riley P, Crooker NU. 2004. Kinematic treatment of coronal mass ejection evolution in the solar wind. Astrophys J 600: 1035–1042. [Google Scholar]
  • Shen F, Shen C, Zhang J, Hess P, Wang Y, Feng X, Cheng H, Yang Y. 2014. Evolution of the 2012 July 12 CME from the Sun to the Earth: Data-constrained three-dimensional MHD simulations. J Geophys Res Space Phys 119(9): 7128–7141. [CrossRef] [Google Scholar]
  • Shiota D, Kataoka R. 2016. Magnetohydrodynamic simulation of interplanetary propagation of multiple coronal mass ejections with internal magnetic flux rope (SUSANOO-CME). Space Weather Int J Res Appl 14(2): 56–75. [CrossRef] [Google Scholar]
  • Vandas M, Odstrćil D, Watari S. 2002. Three-dimensional MHD simulation of a loop-like magnetic cloud in the solar wind. J Geophys Res Space Phys 107(A9): 1236. [CrossRef] [Google Scholar]
  • Wada W, Liou MS. 2012. An accurate and robust flux splitting scheme for shock and contact discontinuities. Siam J Sci Comput 18(3): 633–657. [CrossRef] [MathSciNet] [Google Scholar]
  • Wang R, Lu Q, Du A, Wang S. 2010a. In situ observations of a secondary magnetic island in an ion diffusion region and associated energetic electrons. Phys Rev Lett 104(17): 175,003. [NASA ADS] [CrossRef] [Google Scholar]
  • Wang R, Lu Q, Li X, Huang C, Wang S. 2010b. Observations of energetic electrons up to 200 keV associated with a secondary island near the center of an ion diffusion region: A cluster case study. J Geophys Res Atmos 115(A11): 11,201. [Google Scholar]
  • Wu CC, Fry CD, Dryer M, Wu ST, Thompson B, Kan L, Feng XS. 2007a. Three-dimensional global simulation of multiple ICMEs interaction and propagation from the Sun to the heliosphere following the 25C28 October 2003 solar events. Adv Space Res 40(12): 1827–1834. [CrossRef] [Google Scholar]
  • Wu CC, Fry CD, Wu ST, Dryer M, Kan L. 2007b. Three-dimensional global simulation of interplanetary coronal mass ejection propagation from the Sun to the heliosphere: Solar event of 12 May 1997. J Geophys Res Space Phys 112(A9): A09,104. [Google Scholar]
  • Ying L, Davies JA, Luhmann JG, Vourlidas A, Bale SD, Lin RP. 2010. Geometric triangulation of imaging observations to track coronal mass ejections continuously out to 1 AU. Astrophys J 710(1): L82–L87. [NASA ADS] [CrossRef] [Google Scholar]
  • Zhou YF, Feng XS. 2013. MHD numerical study of the latitudinal deflection of coronal mass ejection. J Geophys Res Space Phys 118(10): 6007–6018. [NASA ADS] [CrossRef] [Google Scholar]
  • Zhou YF, Feng XS, Wu ST, Du D, Shen F, Xiang CQ. 2012. Using a 3-D spherical plasmoid to interpret the Sun-to-Earth propagation of the 4 November 1997 coronal mass ejection event. J Geophys Res 117(A01): 102. [Google Scholar]
  • Ziegler U. 2004. A central-constrained transport scheme for ideal magnetohydrodynamics. J Comput Phys 196: 393–416. [Google Scholar]
  • Ziegler U. 2011. A semi-discrete central scheme for magnetohydrodynamics on orthogonal-curvilinear grids. J Comput Phys 230: 1035–1063. [NASA ADS] [CrossRef] [Google Scholar]
  • Zuccarello FP, Bemporad A, Jacobs C, Mierla M, Poedts S, Zuccarello F. 2012a. The role of streamers in the deflection of coronal mass ejections: Comparison between stereo three-dimensional reconstructions and numerical simulations. Astrophys J 744(66): 14. [CrossRef] [Google Scholar]
  • Zuccarello FP, Meliani Z, Poedts S. 2012b. Numerical modeling of the initiation of coronal mass ejections in active region NOAA 9415. Astrophys J 758(2): 117. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.