Planetary Space Weather
Open Access
Research Article
Issue
J. Space Weather Space Clim.
Volume 9, 2019
Planetary Space Weather
Article Number A36
Number of page(s) 11
DOI https://doi.org/10.1051/swsc/2019035
Published online 04 October 2019
  • Acton C, Bachman N, Semenov B, Wright E. 2018. A look towards the future in the handling of space science mission geometry. Planet Space Sci 150: 9–12. DOI: 10.1016/j.pss.2017.02.013. [NASA ADS] [CrossRef] [Google Scholar]
  • Acton CH Jr. 1996. Ancillary data services of NASA’s navigation and ancillary information facility. Planet Space Sci 44(1): 65–70. [NASA ADS] [CrossRef] [Google Scholar]
  • Acuña MH, Connerney JEP, Wasilewski P, Lin RP, Mitchell D, Anderson KA, Carlson CW, McFadden J, Rème H, Mazelle C, Vignes D. 2001. Magnetic field of Mars: Summary of results from the aerobraking and mapping orbits. J Geophys Res Planet 106(E10): 23403–23417. DOI: 10.1029/2000JE001404. [NASA ADS] [CrossRef] [Google Scholar]
  • Bergeot N, Tsagouri I, Bruyninx C, Legrand J, Chevalier JM, Defraigne P, Baire Q, Pottiaux E. 2013. The influence of space weather on ionospheric total electron content during the 23rd solar cycle. J Space Weather Space Clim 3: A25. DOI: 10.1051/swsc/2013047. [CrossRef] [Google Scholar]
  • Bilitza D, McKinnell LA, Reinisch B, Fuller-Rowell T, Bilitza D, McKinnell LA, Reinisch B, Fuller-Rowell T. 2011. The international reference ionosphere today and in the future. J Geodesy 85(12): 909–920. DOI: 10.1007/s00190-010-0427-x. [CrossRef] [Google Scholar]
  • Chapman S. 1931. The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth. Proc Phys Soc 43(1): 26. DOI: 10.1088/0959-5309/43/1/305. [NASA ADS] [CrossRef] [Google Scholar]
  • Covington AE. 1969. Solar Radio Emission at 10.7 cm, 1947–1968. J R Astron Soc Can 63: 125–132. [Google Scholar]
  • Dehant V, Folkner W, Renotte E, Orban D, Asmar S, Balmino G, Barriot JP, Benoist J, Biancale R, Biele J, Budnik F. 2009. Lander radioscience for obtaining the rotation and orientation of Mars. Planet Space Sci 57(8–9): 1050–1067. DOI: 10.1016/j.pss.2008.08.009. [NASA ADS] [CrossRef] [Google Scholar]
  • Dehant V, Le Maistre S, Rivoldini A, Yseboodt M, Rosenblatt P, Van Hoolst T, Mitrovic M, Karatekin Ö, Marty JC, Chicarro A. 2011. Revealing Mars’ deep interior: Future geodesy missions using radio links between landers, orbiters, and the Earth. Planet Space Sci 59(10): 1069–1081. DOI: 10.1016/j.pss.2010.03.014. [NASA ADS] [CrossRef] [Google Scholar]
  • Dehant V, Le Maistre S, Balanda RM, Bergeot N, Karatekin O, et al. 2019. The radio-science LaRa instrument onboard ExoMars 2020 to investigate the rotation and interior of Mars. Planet. Space Sci.. Accepted for Publication. [Google Scholar]
  • Flynn CL, Vogt MF, Withers P, Andersson L, England S, Liu G. 2017. MAVEN observations of the effects of crustal magnetic fields on electron density and temperature in the Martian dayside ionosphere. Geophys Res Lett 44(21): 10812–10821. DOI: 10.1002/2017GL075367. [CrossRef] [Google Scholar]
  • Folkner WM, Dehant V, Le Maistre S, Yseboodt M, Rivoldini A, Van Hoolst T, Asmar SW, Golombek MP. 2018. The rotation and interior structure experiment on the InSight mission to Mars. Space Sci Rev 214(5): 100. DOI: 10.1007/s11214-018-0530-5. [CrossRef] [Google Scholar]
  • Grima C., Kofman W. 2008. MARSIS derived enhanced ionospheric calibration data. Technical Report No 21646/08/NL/NR, European Space Agency 3, pp. 1–10.. [Google Scholar]
  • Ho C, Golshan N, Kliore A. 2002. Radio wave propagation handbook for communication on and around Mars, Technical Report 02-5, Jet Propulsion Laboratory, Pasadena, CA. [Google Scholar]
  • Klobuchar JA, Parkinson BW, Spilker JJ. 1996. Ionospheric effects in global positioning system: Theory and applications, American Institute of Aeronautics and Astronautics, Washington, DC. Google Scholar. [Google Scholar]
  • Kuchynka P, Folkner WM, Konopliv AS, Parker TJ, Park RS, Le Maistre S, Dehant V. 2014. New constraints on Mars rotation determined from radiometric tracking of the Opportunity Mars Exploration Rover. Icarus 229: 340–347. DOI: 10.1016/j.icarus.2013.11.015. [NASA ADS] [CrossRef] [Google Scholar]
  • Lillis RJ, Brain DA, England SL, Withers P, Fillingim MO, Safaeinili A. 2010. Total electron content in the Mars ionosphere: Temporal studies and dependence on solar EUV flux. J Geophys Res Space Phys 115, A11314. DOI: 10.1029/2010JA015698. [CrossRef] [Google Scholar]
  • Liu L, Chen Y. 2009. Statistical analysis of solar activity variations of total electron content derived at Jet Propulsion Laboratory from GPS observations. J Geophys Res Space Phys 114, A10311. DOI: 10.1029/2009JA014533. [CrossRef] [Google Scholar]
  • Liu L, Wan W, Ning B, Pirog OM, Kurkin VI. 2006. Solar activity variations of the ionospheric peak electron density. J Geophys Res 111(8): A08304. DOI: 10.1029/2006JA011598. [Google Scholar]
  • Marchaudon A, Blelly PL. 2015. A new interhemispheric 16-moment model of the plasmasphere-ionosphere system: IPIM. J Geophys Res Space Phys 120(7): 5728–5745. DOI: 10.1002/2015JA021193. [CrossRef] [Google Scholar]
  • Mendillo M, Marusiak AG, Withers P, Morgan D, Gurnett D. 2013. A new semiempirical model of the peak electron density of the Martian ionosphere. Geophys Res Lett 40(20): 5361–5365. DOI: 10.1002/2013GL057631. [CrossRef] [Google Scholar]
  • Mendillo M, Narvaez C, Trovato J, Withers P, Mayyasi M, Morgan D, Kopf A, Gurnett D, Němec F, Campbell B. 2018. Mars Initial Reference Ionosphere (MIRI) model: Updates and validations using MAVEN, MEX, and MRO data sets. J Geophys Res Space Phys 123(7): 5674–5683. DOI: 10.1029/2018JA025263. [CrossRef] [Google Scholar]
  • Morel L, Witasse O, Warnant R, Cerisier JC, Blelly PL, Lilensten J. 2004. Diagnostic of the dayside ionosphere of Mars using the Total Electron Content measurement by the NEIGE/Netlander experiment: An assessment study. Planet Space Sci 52(7): 603–611. [CrossRef] [Google Scholar]
  • Morgan DD, Witasse O, Nielsen E, Gurnett DA, Duru F, Kirchner DL. 2013. The processing of electron density profiles from the Mars Express MARSIS topside sounder. Radio Sci 48(3): 197–207. DOI: 10.1002/rds.20023. [CrossRef] [Google Scholar]
  • Mouginot J, Kofman W, Safaeinili A, Hérique A. 2008. Correction of the ionospheric distortion on the MARSIS surface sounding echoes. Planet Space Sci 56(7): 917–926. DOI: 10.1016/j.pss.2008.01.010. [CrossRef] [Google Scholar]
  • Pätzold M, Neubauer FM, Carone L, Hagermann A, Stanzel C, Häusler B, Remus S, Selle J, Hagl D, Hinson DP, Simpson RA. 2004. MaRS: Mars express orbiter radio science. In: Mars Express: The Scientific Payload, ESA Publications Division 1240, pp. 141–163. [Google Scholar]
  • Peter K, Pätzold M, Molina-Cuberos G, Witasse O, González-Galindo F, Withers P, Bird MK, Häusler B, Hinson DP, Tellmann S, Tyler GL. 2014. The dayside ionospheres of Mars and Venus: Comparing a one-dimensional photochemical model with MaRS (Mars Express) and VeRa (Venus Express) observations. Icarus 233: 66–82. DOI: 10.1016/j.icarus.2014.01.028. [NASA ADS] [CrossRef] [Google Scholar]
  • Safaeinili A, Kofman W, Mouginot J, Gim Y, Herique A, Ivanov AB, Plaut JJ, Picardi G. 2007. Estimation of the total electron content of the Martian ionosphere using radar sounder surface echoes. Geophys Res Lett 34(23), L23204. DOI: 10.1029/2007GL032154. [CrossRef] [Google Scholar]
  • Sánchez-Cano B, Witasse O, Herraiz M, Radicella SM, Bauer J, Blelly PL, Rodríguez-Caderot G. 2012. Retrieval of ionospheric profiles from the Mars Express MARSIS experiment data and comparison with radio occultation data. Geosci Instrum Meth Data Syst 1(1): 77–84. DOI: 10.5194/gi-1-77-2012. [CrossRef] [Google Scholar]
  • Sánchez-Cano B, Radicella SM, Herraiz M, Witasse O, Rodríguez-Caderot G. 2013. NeMars: An empirical model of the Martian dayside ionosphere based on Mars Express MARSIS data. Icarus 225(1): 236–247. DOI: 10.1016/j.icarus.2013.03.021. [CrossRef] [Google Scholar]
  • Sánchez-Cano B, Morgan DD, Witasse O, Radicella SM, Herraiz MF, Orosei R, Cartacci M, Cicchetti A, Noschese R, Kofman W, Grima C. 2015. Total electron content in the Martian atmosphere: A critical assessment of the Mars Express MARSIS data sets. J Geophys Res Space Phys 120(3): 2166–2182. DOI: 10.1002/2014JA020630. [CrossRef] [Google Scholar]
  • Sánchez-Cano B, Lester M, Witasse O, Blelly PL, Indurain M, Cartacci M, González-Galindo F, Vicente-Retortillo Á, Cicchetti A, Noschese R. 2018. Spatial, seasonal and solar cycle variations of the Martian total electron content (TEC): Is the TEC a good tracer for atmospheric cycles? J Geophys Res Planet 123(7): 1746–1759. DOI: 10.1029/2018JE005626. [CrossRef] [Google Scholar]
  • Smith FL III, Smith C. 1972. Numerical evaluation of Chapman’s grazing incidence integral ch (X, χ). J Geophys Res 77(19): 3592–3597. DOI: 10.1029/JA077i019p03592. [NASA ADS] [CrossRef] [Google Scholar]
  • Wessel P, Smith WH, Scharroo R, Luis J, Wobbe F. 2013. Generic mapping tools: improved version released. Eos Trans Am Geophys Union 94(45): 409–410. [CrossRef] [Google Scholar]
  • Yseboodt M, Dehant V, Péters MJ. 2017. Signatures of the Martian rotation parameters in the Doppler and range observables. Planet Space Sci 144: 74–88. DOI: 10.1016/j.pss.2017.05.008. [CrossRef] [Google Scholar]
  • Zuber MT, Lemoine FG, Smith DE, Konopliv AS, Smrekar SE, Asmar SW. 2007. Mars reconnaissance orbiter radio science gravity investigation. J Geophys Res 112(E5), E05S07. DOI: 10.1029/2006je002833. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.