Open Access
Issue
J. Space Weather Space Clim.
Volume 9, 2019
Article Number A35
Number of page(s) 12
DOI https://doi.org/10.1051/swsc/2019032
Published online 30 September 2019
  • Aarons J. 1991. The role of the ring current in the generation or inhibition of equatorial f layer irregularities during magnetic storms. Radio Sci 26(4): 1131. [CrossRef] [Google Scholar]
  • Abdu MA. 2005. Equatorial ionosphere–thermosphere system: Electrodynamics and irregularities. Adv Space Res 35(5): 771–787. [CrossRef] [Google Scholar]
  • Abdu MA, Kherani EA, Batista IS, Sobral JHA. 2009. Equatorial evening prereversal vertical drift and spread F suppression by disturbance penetration electric fields. Geophys Res Lett 36: L19103. DOI: 10.1029/2009GL039919. [CrossRef] [Google Scholar]
  • Akasofu SI. 1981. Energy coupling between the solar wind and the magnetosphere. Space Sci Rev 28(2): 121–190. [CrossRef] [Google Scholar]
  • Akasofu S-I. 1996. Search for the “unknown” quantity in the solar wind: A personal account. J Geophys Res 101: 10531–10540. [CrossRef] [Google Scholar]
  • Alfonsi L, Spogli L, Tong JR, De Franceschi G, Romano V, Bourdillon A, Le Huy M, Mitchell CN. 2011. GPS scintillation and TEC gradients at equatorial latitudes in April 2006. Adv Space Res 47(10): 1750–1757. [CrossRef] [Google Scholar]
  • Alfonsi L, Spogli L, Pezzopane M, Romano V, Zuccheretti E, De Franceschi G, Cabrera MA, Ezquer RG. 2013. Comparative analysis of spread-F signature and GPS scintillation occurrences at Tucumán, Argentina. J Geophys Res Space Phys 118: 4483–4502. DOI: 10.1002/jgra.50378. [CrossRef] [Google Scholar]
  • Anderson D. 2011. Daytime vertical E×B drift velocities inferred from ground-based equatorial magnetometer observations. In: Aeronomy of the Earth’s atmosphere and ionosphere, Abdu MA, Pancheva D, Bhattacharyya A (Eds.), Springer, The Netherlands, vol. 2, pp. 203–210. DOI: 10.1007/978-94-007-0326-1. [CrossRef] [Google Scholar]
  • Astafyeva E, Zakharenkova I, Patrick A. 2016. Prompt penetration electric fields and the extreme topside ionospheric response to the June 22–23, 2015 geomagnetic storm as seen by the Swarm constellation. Earth Planets Space 68(1): 152. [CrossRef] [Google Scholar]
  • Bertello I, Piersanti M, Candidi M, Diego P, Ubertini P. 2018, October. Electromagnetic field observations by the DEMETER satellite in connection with the 2009 L’Aquila earthquake. Ann Geophys 36(5): 1483–1493. [CrossRef] [Google Scholar]
  • Balan N, Shiokawa K, Otsuka Y, Kikuchi T, Vijaya Lekshmi D, Kawamura S, Yamamoto M, Bailey G. 2010. A physical mechanism of positive ionospheric storms at low latitudes and midlatitudes. J Geophys Res 115(A2): A02304. DOI: 10.1029/2009JA014515. [CrossRef] [Google Scholar]
  • Balan N, Liu L, Le H. 2018. A brief review of equatorial ionization anomaly and ionospheric irregularities. Earth Planet Phys 2(4): 257–275. [CrossRef] [Google Scholar]
  • Chen PR. 1992. Two-day oscillation of the equatorial ionization anomaly. J Geophys Res: Space Phys 97(A5): 6343–6357. [CrossRef] [Google Scholar]
  • Cherniak I, Krankowski A, Zakharenkova I. 2014. Observation of the ionospheric irregularities over the Northern Hemisphere: Methodology and service. Radio Sci 49(8): 653–662. [CrossRef] [Google Scholar]
  • Cesaroni C, Spogli L, Alfonsi L, De Franceschi G, Ciraolo L, Monico JFG, Scotto C, Romano V, Aquino M, Bougard B. 2015. L-band scintillations and calibrated total electron content gradients over Brazil during the last solar maximum. J Space Weather Space Clim 5: A36. [CrossRef] [Google Scholar]
  • Cicone A, Liu J, Zhou H. 2016a. Hyperspectral chemical plume detection algorithms based on multidimensional iterative filtering decomposition. Phil Trans R Soc A: Math Phys Eng Sci 374(2065): 2015.0196. DOI: 10.1098/rsta.2015.0196. [CrossRef] [Google Scholar]
  • Cicone A, Liu J, Zhou H. 2016b. Adaptive local iterative filtering for signal decomposition and instantaneous frequency analysis. Appl Comput Harmon Anal 41(2): 384–411. DOI: 10.1016/j.acha.2016.03.001. [CrossRef] [Google Scholar]
  • Cicone A, Zhou H. 2017. Multidimensional iterative filtering method for the decomposition of high-dimensional non-stationary signals. Numer Math Theory Methods Appl 10(2): 278–298. DOI: 10.4208/nmtma.2017.s05. [CrossRef] [Google Scholar]
  • Cicone A, Zhou H. 2018. Numerical analysis for iterative filtering with new efficient implementations based on FFT. Preprint arXiv:1802.01359. [Google Scholar]
  • Cicone A, Dell’Acqua P. 2019. Study of boundary conditions in the iterative filtering method for the decomposition of nonstationary signals. J Comput Appl Math. DOI: 10.1016/j.cam.2019.04.028. Preprint arXiv:1811.07610. [Google Scholar]
  • Cicone A. 2019. Nonstationary signal decomposition for dummies. In: Advances in mathematical methods and high performance computing. Advances in mechanics and mathematics, vol. 41, Singh V, Gao D, Fischer A (Eds.), Springer Nature, Cham, Switzerland. DOI: 10.1007/978-3-030-02487-1_3. Preprint arXiv:1710.04844. [Google Scholar]
  • Cohen L. 2001. The uncertainty principle for the short-time Fourier transform and wavelet transform. In: Wavelet transforms and time-frequency signal analysis. Applied and numerical harmonic analysis, Debnath L, (Ed.), Birkhäuser, Boston, MA. DOI: 10.1007/978-1-4612-0137-3_8. [Google Scholar]
  • Consolini G, Kretzschmar M, Lui AT, Zimbardo G, Macek WM. 2005. On the magnetic field fluctuations during magnetospheric tail current disruption: A statistical approach. J Geophys Res Space Phys 110(A7): A07202. [CrossRef] [Google Scholar]
  • Davis TN, Sugiura M. 1966. Auroral electrojet activity index AE and its universal time variations. J Geophys Res 71(3): 785–801. [CrossRef] [Google Scholar]
  • de Oliveira Moraes A, Muella MT, de Paula ER, de Oliveira CB, Terra WP, Perrella WJ, Meibach-Rosa PR. 2018. Statistical evaluation of GLONASS amplitude scintillation over low latitudes in the Brazilian territory. Adv Space Res 61(7): 1776–1789. [CrossRef] [Google Scholar]
  • Fejer BG. 2011. Low latitude ionospheric electrodynamics. Space Sci Rev 158(1): 145–166. [CrossRef] [Google Scholar]
  • Fejer BG, Blanc M, Richmond AD. 2017. Post-storm middle and low-latitude ionospheric electric fields effects. Space Sci Rev 206(1–4): 407–429. [CrossRef] [Google Scholar]
  • Flandrin P. 1998. Time-frequency/time-scale analysis, vol. 10, Academic Press, Inc., Orlando, FL, USA. ©1998. ISBN:0122598709 9780122598708. [Google Scholar]
  • Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc R Soc Lond A 454: 903–995. [CrossRef] [Google Scholar]
  • Jin SG, Luo O, Park P. 2008. GPS observations of the ionospheric F2-layer behavior during the 20th November 2003 geomagnetic storm over South Korea. J Geodesy 82(12): 883–892. DOI: 10.1007/s00190-008-0217-x. [CrossRef] [Google Scholar]
  • Kelley MC. 2009. The Earth’s ionosphere: Plasma physics and electrodynamics, 2nd edition, Academic Press (Elsevier), San Diego, CA USA. [Google Scholar]
  • Koskinen HE, Tanskanen EI. 2002. Magnetospheric energy budget and the epsilon parameter. J Geophys Res Space Phys 107(A11): SMP 42-1–SMP 42-10. [CrossRef] [Google Scholar]
  • Kintner PM, Humphreys T, Hinks J. 2009. GNSS and ionospheric scintillation – How to survive to the next solar maximum, InsideGNSS, July/August 2009, 22–30. [Google Scholar]
  • Lyatskaya S, Lyatsky W, Khazanov GV. 2009. Auroral electrojet AL index and polar magnetic disturbances in two hemispheres. J Geophys Res Space Phys 114(A6): A06212. DOI: 10.1029/2009JA014100. [CrossRef] [Google Scholar]
  • Mannucci AJ, Wilson BD, Edwards CD. 1993. A new method for monitoring the Earth ionosphere total electron content using the GPS global network. Proc ION GPS-93: 1323–1332. [Google Scholar]
  • Mannucci A, Tsurutani B, Iijima B, Komjathy A, Saito A, Gonzalez W, Guarnieri F, Kozyra J, Skoug R. 2005. Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 “Halloween storms”. Geophys Res Lett 32(12): L12S02. DOI: 10.1029/2004GL021467. [CrossRef] [Google Scholar]
  • Materassi M, Alfonsi L, De Franceschi G, Mitchell CN, Romano V, Spalla P, Wernik AW, Yordanova E. 2005. Intermittency and ionospheric scintillations in GPS data. In: Proceedings of the International Workshop on Applications of Wavelets to Real World Problems (IWW2005), vol. 17, p. 18. [Google Scholar]
  • Materassi M, Mitchell CN. 2007. Wavelet analysis of GPS amplitude scintillation: A case study. Radio Sci 42(1): RS1004. DOI: 10.1029/2005RS003415. [CrossRef] [Google Scholar]
  • McComas DJ, Bame SJ, Barker P, Feldman WC, Phillips JL, Riley P, Griffee JW. 1998. Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the advanced composition explorer. Space Sci Rev 86(1): 563–612. [Google Scholar]
  • Muella MTAH, Kherani EA, de Paula ER, Cerruti AP, Kintner PM, Kantor IJ, Mitchell CN, Batista IS, Abdu MA. 2010. Scintillation-producing Fresnel-scale irregularities associated with the regions of steepest TEC gradients adjacent to the equatorial ionization anomaly. J Geophys Res 115: A03301. DOI: 10.1029/2009JA014788. [Google Scholar]
  • Nishida A. 1968. Coherence of geomagnetic DP 2 fluctuations with interplanetary magnetic variations. J Geophys Res 73(17): 5549–5559. [CrossRef] [Google Scholar]
  • Olwendo OJ, Cesaroni C, Yamazaki Y, Cilliers P. 2017. Equatorial ionospheric disturbances over the East African sector during the 2015 St. Patrick’s day storm. Adv Space Res 60(8): 1817–1826. [CrossRef] [Google Scholar]
  • Perreault P, Akasofu S-I. 1978. A study of geomagnetic storms. Geophys J R Astron Soc 54: 547–573. [NASA ADS] [CrossRef] [Google Scholar]
  • Piersanti M, Alberti T, Bemporad A, Berrilli F, Bruno R, et al. 2017. Comprehensive analysis of the geoeffective solar event of 21 June 2015: Effects on the magnetosphere, plasmasphere, and ionosphere systems. Solar Phys 292: 169. DOI: 10.1007/s11207-017-1186-0. [Google Scholar]
  • Piersanti M, Materassi M, Cicone A, Spogli L, Zhou H, Ezquer RG. 2018. Adaptive local iterative for the analysis of nonstationary signals. J Geophys Res Space Phys 123: 1031–1046. DOI: 10.1002/2017JA024153. [CrossRef] [Google Scholar]
  • Rastogi RG. 1989. The equatorial electrojet: Magnetic and ionospheric effects. In: Geomagnetism, Jacobs J, (Ed.), Academic, New York, NY, vol. 3, pp. 461–525. [Google Scholar]
  • Rishbeth H. 1971. Polarization fields produced by winds in the equatorial F region. Planet Space Sci 19: 357–369. DOI: 10.1016/0032-0633(71)90098-5. [CrossRef] [Google Scholar]
  • Sanz J, Juan J, González-Casado G, Prieto-Cerdeira R, Schlueter S, Orus R. 2014. Novel ionospheric activity indicator specifically tailored for GNSS users. In: Proceedings of ION GNSS+ 2014, Tampa, Florida (USA), pp. 1173–1182. http://www.ion.org/publications/abstract.cfm?jp=p&articleID=12269. [Google Scholar]
  • Scherliess L, Fejer BG. 1997. Storm time dependence of equatorial disturbance dynamo zonal electric fields. J Geophys Res Space Phys 102(A11): 24037–24046. [CrossRef] [Google Scholar]
  • Smith CW, L’Heureux J, Ness NF, Acuña MH, Burlaga LF, Scheifele J. 1998. The ACE magnetic fields experiment. Space Sci Rev 86(1): 613–632. [CrossRef] [Google Scholar]
  • Spogli L, Alfonsi L, De Franceschi G, Romano V, Aquino MHO, Dodson A. 2009. Climatology of GPS ionospheric scintillations over high and mid-latitude European regions. Ann. Geophys 27: 3429–3437. [CrossRef] [Google Scholar]
  • Spogli L, Alfonsi L, Romano V, De Franceschi G, Francisco GMJ, Shimabukuro MH, Bougard B, Aquino M. 2013. Assessing the GNSS scintillation climate over Brazil under increasing solar activity. J Atmos Solar-Terr Phys 105: 199–206. DOI: 10.1016/j.jastp.2013.10.003. [Google Scholar]
  • Spogli L, Cesaroni C, Di Mauro D, Pezzopane M, Alfonsi L, et al. 2016. Formation of ionospheric irregularities over Southeast Asia during the 2015 St. Patrick’s Day storm. J Geophys Res Space Phys 121(12): 1–12. [Google Scholar]
  • Tsurutani B, Mannucci A, Iijima B, Abdu MA, Sobral JHA, et al. 2004. Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields. J Geophys Res 109(A8). [Google Scholar]
  • Tsurutani B, Verkhoglyadova O, Mannucci A, Saito A, Araki T, et al. 2008. Prompt penetration electric fields (ppefs) and their ionospheric effects during the great magnetic storm of 30–31 October 2003. J Geophys Res 113(A5). [Google Scholar]
  • Tulasi Ram S, Yokoyama T, Otsuka Y, Shiokawa K, Sripathi S, et al. 2016. Duskside enhancement of equatorial zonal electric field response to convection electric fields during the St. Patrickˈs Day storm on 17 March 2015. J Geophys Res Space Phys 121: 538–548. DOI: 10.1002/2015JA021932. [CrossRef] [Google Scholar]
  • Van Dierendonck AJ, Klobuchar J, Hua Q. 1993. Ionospheric scintillation monitoring using commercial single frequency C/A code receivers. In: Paper presented at the Sixth International Technical Meeting (ION GPS-93), Satell. Div., Inst. of Navig., Salt Lake City, Utah, 22–24 Sept. [Google Scholar]
  • Venkatesh K, Tulasi Ram S, Fagundes P, Seemala GK, Batista I. 2017. Electrodynamic disturbances in the Brazilian equatorial and low-latitude ionosphere on St. Patrick’s Day storm of 17 March 2015. J Geophys Res 122(4): 4553. [CrossRef] [Google Scholar]
  • Wei Y, Zhao B, Li G, Wan W. 2015. Electric field penetration into Earth’s ionosphere: A brief review for 2000–2013. Sci Bull 60(8): 748–761. [CrossRef] [Google Scholar]
  • Wernik AW, Liu CH. 1974. Ionospheric irregularities causing scintillations of GHz frequency radio signals. J Atmos Terr Phys 36: 871–879. DOI: 10.1016/0021-9169(74)90032-4. [CrossRef] [Google Scholar]
  • Wernik AW. 1997. Wavelet transform of nonstationary ionospheric scintillation. Acta Geophys Pol XLV: 237–253. [Google Scholar]
  • Wernik AW, Secan JA, Fremouw EJ. 2003. Ionospheric irregularities and scintillation. Adv Space Res 31(4): 971–981. DOI: 10.1016/S0273-1177(02)00795-0. [CrossRef] [Google Scholar]
  • Yeh KC, Liu CH. 1982. Radio wave scintillations in the ionosphere. Proc IEEE 70(4): 324–360. [Google Scholar]
  • Zong Q-G, Reinisch B, Song P, Wei Y, Galkin I. 2010. Dayside ionospheric response to the intense interplanetary shocks–solar wind discontinuities: Observations from the digisonde global ionospheric radio observatory. J Geophys Res 115(A6): A06304. DOI: 10.1029/2009JA014796. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.