Open Access
Issue |
J. Space Weather Space Clim.
Volume 9, 2019
|
|
---|---|---|
Article Number | A43 | |
Number of page(s) | 19 | |
DOI | https://doi.org/10.1051/swsc/2019041 | |
Published online | 10 December 2019 |
- Amblard P-O, Moussaoui S, Dudok de Wit T, Aboudarham J, Kretzschmar M, Lilensten J, Auchère F. 2008. The EUV Sun as the superposition of elementary Suns. A&A 487(2): L13–L16. https://doi.org/10.1051/0004-6361:200809588. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Antia H, Bhatnagar A, Ulmschneider P. 2003. Lectures on solar physics, vol 619, Springer Science & Business Media, Berlin, Germany, 619 p. https://doi.org/10.1007/3-540-36963-5. [Google Scholar]
- Cessateur G, Dudok de Wit T, Kretzschmar M, Lilensten J, Hochedez J-F, Snow M. 2011. Monitoring the solar UV irradiance spectrum from the observation of a few passbands. A&A 528: A68. https://doi.org/10.1051/0004-6361/201015903. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Chamberlin P, Woods T, Didkovsky L, Eparvier F, Jones A, et al. 2018. Solar ultraviolet irradiance observations of the solar flares during the intense September 2017 storm period. Space Weather 16(10): 1470–1487. https://doi.org/10.1029/2018SW001866. [CrossRef] [Google Scholar]
- Chamberlin PC, Woods TN, Eparvier FG. 2007. Flare irradiance spectral model (FISM): daily component algorithms and results. Space Weather 5(7). https://doi.org/10.1029/2007SW000316. [Google Scholar]
- Chamberlin PC, Woods TN, Eparvier FG. 2008. Flare irradiance spectral model (FISM): flare component algorithms and results. Space Weather 6(5). https://doi.org/10.1029/2007SW000372. [Google Scholar]
- Chamberlin PC, Woods TN, Eparvier FG, Jones AR. 2009. Next generation x-ray sensor (XRS) for the NOAA GOES-R satellite series. In: Proc. SPIE 7438, Solar Physics and Space Weather Instrumentation III, 743802 (26 August 2009), San Diego, California, United States. https://doi.org/10.1117/12.826807. [Google Scholar]
- Davies K. 1990. Ionospheric radio. IEE electromagnetic waves series, vol. 31, Peter Peregrinus Ltd., London, UK. https://doi.org/10.1049/PBEW031E. [CrossRef] [Google Scholar]
- Dudok de Wit T, Kretzschmar M, Lilensten J, Woods T. 2009. Finding the best proxies for the solar UV irradiance. Geophys Res Lett 36(10). https://doi.org/10.1029/2009GL037825. [CrossRef] [Google Scholar]
- Dudok de Wit T, Kretzschmar M, Aboudarham J, Amblard P-O, Auchère F, Lilensten J. 2008. Which solar EUV indices are best for reconstructing the solar EUV irradiance? Adv Space Res 42(5): 903–911. https://doi.org/10.1016/j.asr.2007.04.019. [CrossRef] [Google Scholar]
- Efron B. 1979. Bootstrap methods: another look at the jackknife annals of statistics. Ann Stat 7(1): 1–26. https://doi.org/10.1214/aos/1176344552. [Google Scholar]
- Eparvier FG, Crotser D, Jones AR, McClintock WE, Snow M, Woods TN. 2009. The extreme ultraviolet sensor (EUVS) for GOES-R. In: Proc. SPIE 7438, Solar Physics and Space Weather Instrumentation III, 743804 (23 September 2009), San Diego, California, United States. https://doi.org/10.1117/12.826445. [Google Scholar]
- Heath DF, Schlesinger BM. 1986. The Mg 280-nm doublet as a monitor of changes in solar ultraviolet irradiance. J Geophys Res: Atmos 91(D8): 8672–8682. https://doi.org/10.1029/JD091iD08p08672. [Google Scholar]
- Hinteregger H. 1981. Representations of solar EUV fluxes for aeronomical applications. Adv Space Res 1(12): 39–52. https://doi.org/10.1016/0273-1177(81)90416-6. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Jachhia L. 1959. Two atmospheric effects in the orbital acceleration of artificial satellites. Nature 183(4660): 526–527. https://doi.org/10.1038/183526a0. [CrossRef] [Google Scholar]
- Kretzschmar M, Lilensten J, Aboudarham J. 2006. Retrieving the solar EUV spectral irradiance from the observation of 6 lines. Adv Space Res 37(2): 341–346. https://doi.org/10.1016/j.asr.2005.02.029. [NASA ADS] [CrossRef] [Google Scholar]
- Lilensten J, Dudok de Wit T, Amblard P-O, Aboudarham J, Auchère F, Kretzschmar M. 2007. Recommendation for a set of solar EUV lines to be monitored for aeronomy applications. Ann Geophys 25(6): 1299–1310. https://doi.org/10.5194/angeo-25-1299-2007. [CrossRef] [Google Scholar]
- McClintock WE, Rottman GJ, Woods TN. 2005. Solar-Stellar Irradiance Comparison Experiment II (SOLSTICE II): Instrument concept and design. Sol Phys 230(1–2): 225–258. https://doi.org/10.1007/s11207-005-7432-x. [Google Scholar]
- Mendillo M, Klobuchar J, Fritz R, Da Rosa A, Kersley L, et al. 1974. Behavior of the ionospheric F region during the great solar flare of August 7, 1972. J Geophys Res 79(4): 665–672. https://doi.org/10.1029/JA079i004p00665. [CrossRef] [Google Scholar]
- Qian L, Burns AG, Chamberlin PC, Solomon SC. 2010. Flare location on the solar disk: modeling the thermosphere and ionosphere response. J Geophys Res: Space Phys 115(A9). https://doi.org/10.1029/2009JA015225. [Google Scholar]
- Richards P, Fennelly J, Torr D. 1994. EUVAC: a solar EUV flux model for aeronomic calculations. J Geophys Res: Space Phys 99(A5): 8981–8992. https://doi.org/10.1029/94JA00518. [NASA ADS] [CrossRef] [Google Scholar]
- Solomon SC, Qian L. 2005. Solar extreme-ultraviolet irradiance for general circulation models. J Geophys Res: Space Phys 110(A10). https://doi.org/10.1029/2005JA011160. [Google Scholar]
- Suess K, Snow M, Viereck R, Machol J. 2016. Solar Spectral Proxy Irradiance from GOES (SSPRING): a model for solar EUV irradiance. J Space Weather Space Clim 6: A10. https://doi.org/10.1051/swsc/2016003. [CrossRef] [Google Scholar]
- Taylor J. 1997. Introduction to error analysis, the study of uncertainties in physical measurements, University Science Books, Sausalito, CA, USA. [Google Scholar]
- Thiemann E, Chamberlin P, Eparvier F, Epp L. 2018. Center-to-limb variability of hot coronal EUV emissions during solar flares. Sol Phys 293(2): 19. https://doi.org/10.1007/s11207-018-1244-2. [NASA ADS] [CrossRef] [Google Scholar]
- Thiemann EM, Chamberlin PC, Eparvier FG, Templeman B, Woods TN, Bougher SW, Jakosky BM. 2017a. The MAVEN EUVM model of solar spectral irradiance variability at Mars: algorithms and results. J Geophys Res: Space Phys 122(3): 2748–2767. https://doi.org/10.1002/2016JA023512. [Google Scholar]
- Thiemann EM, Eparvier FG, Woods TN. 2017b. A time dependent relation between EUV solar flare light-curves from lines with differing formation temperatures. J Space Weather Space Clim 7: A36. https://doi.org/10.1051/swsc/2017037. [CrossRef] [EDP Sciences] [Google Scholar]
- Tobiska WK, Eparvier F. 1998. EUV97: improvements to EUV irradiance modeling in the soft X-rays and FUV. Sol Phys 177(1–2): 147–159. https://doi.org/10.1023/A:10049314. [NASA ADS] [CrossRef] [Google Scholar]
- Tobiska WK, Woods T, Eparvier F, Viereck R, Floyd L, Bouwer D, Rottman G, White O. 2000. The SOLAR2000 empirical solar irradiance model and forecast tool. J Atmos Solar-Terr Phys 62(14): 1233–1250. https://doi.org/10.1016/S1364-6826(00)00070-5. [NASA ADS] [CrossRef] [Google Scholar]
- Torr MR, Torr D. 1985. Ionization frequencies for solar cycle 21: revised. J Geophys Res: Space Phys 90(A7): 6675–6678. https://doi.org/10.1029/JA090iA07p06675. [Google Scholar]
- Van Huffel S. 1989. The extended classical total least squares algorithm. J Comput Appl Math 25(1): 111–119. https://doi.org/10.1016/0377-0427(89)90080-0. [CrossRef] [Google Scholar]
- Veronig A, Temmer M, Hanslmeier A, Otruba W, Messerotti M. 2002. Temporal aspects and frequency distributions of solar soft X-ray flares. A&A 382(3): 1070–1080. https://doi.org/10.1051/0004-6361:20011694. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Viereck R, Hanser F, Wise J, Guha S, Jones A, McMullin D, Plunket S, Strickland D, Evans S. 2007. Solar extreme ultraviolet irradiance observations from GOES: design characteristics and initial performance. In: Proc. SPIE 6689, Solar Physics and Space Weather Instrumentation II, 66890K (20 September 2007), San Diego, California, United States. https://doi.org/10.1117/12.734886. [Google Scholar]
- Woods T, Eparvier F, Hock R, Jones A, Woodraska D, et al. 2010. Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): overview of science objectives, instrument design, data products, and model developments. In: The solar dynamics observatory, Pesnell WD, Thompson BJ, Chamberlin PC (Eds.), Springer Science and Business Media, New York, NY, USA, pp. 115–143. https://doi.org/10.1007/s11207-011-9841-3. [CrossRef] [Google Scholar]
- Woods TN, Eparvier FG, Bailey SM, Chamberlin PC, Lean J, Rottman GJ, Solomon SC, Tobiska WK, Woodraska DL. 2005. Solar EUV Experiment (SEE): mission overview and first results. J Geophys Res: Space Phys 110(A1): A01312. https://doi.org/10.1029/2004JA010765. [CrossRef] [Google Scholar]
- Woods TN, Hock R, Eparvier F, Jones AR, Chamberlin PC, et al. 2011. New solar extreme-ultraviolet irradiance observations during flares. Astrophys J 739(2): 59. https://doi.org/10.1088/0004-637X/739/2/59. [NASA ADS] [CrossRef] [Google Scholar]
- Woods TN, Tobiska WK, Rottman GJ, Worden JR. 2000. Improved solar Lyman α irradiance modeling from 1947 through 1999 based on UARS observations. J Geophys Res: Space Phys 105(A12): 27195–27215. https://doi.org/10.1029/2000JA000051. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.