J. Space Weather Space Clim.
Volume 9, 2019
Topical Issue - Scientific Advances from the European Commission H2020 projects on Space Weather
Article Number A42
Number of page(s) 15
Published online 28 November 2019
  • Afraimovich EL. 2000. GPS global detection of the ionospheric response to solar flares. Radio Sci 35(6): 417–1424. [CrossRef] [Google Scholar]
  • Curto JJ, Alberca LF, Castell J. 2016. Dynamic aspects of the Solar flare effects and their impact in the detection procedures. J Ind Geophys Union 2: 99–104. [Google Scholar]
  • Curto JJ, Amory-Mazaudier C, Cardús JO, Torta JM, Menvielle M. 1994a. Solar flare effects at Ebre: regular and reversed solar flare effects, statistical analysis (1953 to 1985), a global case study and a model of elliptical ionospheric currents. J Geophys Res 99(A3): 3945–3954. [CrossRef] [Google Scholar]
  • Curto JJ, Amory-Mazaudier C, Cardús JO, Torta JM, Menvielle M. 1994b. Solar flare effects at Ebre: unidimensional physical, integrated model. J Geophys Res 99(A12): 23289–23296. [CrossRef] [Google Scholar]
  • Curto JJ, Gaya-Pique LR. 2009a. Geoeffectiveness of solar flares in magnetic crochet (sfe) production: I – Dependence on their spectral nature and position on the solar disk. J Atmos Solar-Terr Phys 71: 1695–1704. [Google Scholar]
  • Curto JJ, Gaya-Pique LR. 2009b. Geoeffectiveness of solar flares in magnetic crochet (sfe) production: II – Dependence on the detection method. J Atmos Solar-Terr Phys 71: 1705–1710. [Google Scholar]
  • Fawcett T. 2006. An introduction to ROC analysis. Pattern Recogn Lett 27(8): 861–874. [CrossRef] [Google Scholar]
  • Fluss R, Faraggi D, Reiser B. 2005. Estimation of the Youden Index and its Associated Cutoff Point. Biom J 47(4): 458–472. [CrossRef] [Google Scholar]
  • García-Rigo A, Hernández-Pajares M, Juan JM, Sanz J. 2007. Solar flare detection system based on global positioning system data: first results. Adv Space Res 39: 889–895. [CrossRef] [Google Scholar]
  • Hernández-Pajares M, García-Rigo A, Juan JM, Sanz J, Monte E, Aragón-Àngel A. 2012. GNSS measurement of EUV photons flux rate during strong and mid solar flares. Space Weather 10: S12001. [CrossRef] [Google Scholar]
  • Juan JM, Sanz J, Rovira-Garcia A, González-Casado G, Ibáñez D, Orus Perez R. 2018. AATR an ionospheric activity indicator specifically based on GNSS measurements. J Space Weather Space Clim 8: A14. [CrossRef] [Google Scholar]
  • Le H, Liu L, He H, Wan W. 2011. Statistical analysis of solar EUV and X-ray flux enhancements induced by solar flares and its implication to upper atmosphere. J Geophys Res 116(A11): A11301. [CrossRef] [Google Scholar]
  • Mitra AP. 1974. Ionospheric effects of solar flares. D. Reidel, Norwell, MA. [Google Scholar]
  • Syrovatskiy SV, Yasyukevich YV, Edemskiy IK, Vesnin AM, Voeykov SV, Zhivetiev IV. 2019. Can we detect X/M/C-class solar flares from global navigation satellite system data? Results Phys 12: 1004–1005. [CrossRef] [Google Scholar]
  • Tsurutani BT, Verkhoglyadova OP, Mannucci AJ, Lakhina GS, Li G, Zank GP. 2009. A brief review of “solar flare effects” on the ionosphere. Radio Sci 44: RS0A17. [CrossRef] [Google Scholar]
  • Wan W, Yuan H, Liu L, Ning B. 2002. The sudden increase in ionospheric total electron content caused by the very intense solar flare on July 14, 2000. Sci China Ser A 45(1): 142–147. [CrossRef] [Google Scholar]
  • Youden WJ. 1950. Index for rating diagnostic tests. Cancer 3(1): 32–35. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.