Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
|
|
---|---|---|
Article Number | 1 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/swsc/2019043 | |
Published online | 22 January 2020 |
- Adriani O, Barbarino GC, Bazilevskaya GA, Bellotti R, Boezio M, et al. 2011. Observations of the 2006 December 13 and 14 solar particle events in the 80 MeV n−1 – 3 GeV n−1 range from space with the PAMELA detector. Astrophys J 742: 102. https://doi.org/10.1088/0004-637x/742/2/102. [CrossRef] [Google Scholar]
- Afanasiev A, Rami V, Rouillard AP, Battarbee M, Aran A, Zucca P. 2018. Modelling of proton acceleration in application to a ground level enhancement. Astron Astrophys 614: A4. https://doi.org/10.1051/0004-6361/201731343. [Google Scholar]
- Alberti T, Laurenza M, Cliver EW, Storini M, Consolini G, Lepreti F. 2017. Solar activity from 2006–2014 and short-term forecasts of solar proton events using the ESPERTA model. Astrophys J 838: 59. https://doi.org/10.3847/1538-4357/aa5cb8. [CrossRef] [Google Scholar]
- Anastasiadis A, Lario D, Papaioannou A, Kouloumvakos A, Vourlidas A. 2019. Solar energetic particles in the inner heliosphere: status and open questions. Phil Trans R Soc A 377: 20180100. https://doi.org/10.1098/rsta.2018.0100. [CrossRef] [Google Scholar]
- Aran A, Sanahuja B, Lario D. 2006. SOLPENCO: a solar particle engineering code. Adv Space Res 37: 1240–1246. https://doi.org/10.1016/j.asr.2005.09.019. [Google Scholar]
- Aran A, Sanahuja B, Lario D. 2008. Comparing proton fluxes of central meridian SEP events with those predicted by SOLPENCO. Adv Space Res 42: 1492–1499. https://doi.org/10.1016/j.asr.2007.08.003. [Google Scholar]
- Camporeale E, Chu X, Agapitov OV, Bortnik J. 2019. On the generation of probabilistic forecasts from deterministic models. Space Weather 17: 455–475. https://doi.org/10.1029/2018SW002026. [CrossRef] [Google Scholar]
- Crosby N, Heynderickx D, Jiggens P, Aran A, Sanahuja B, Truscott P, Lei F, Jacobs C, Poedts S, Gabriel S, et al. 2015. SEPEM: a tool for statistical modeling the solar energetic particle environment. Space Weather 13: 406–426. https://doi.org/10.1002/2013SW001008. [CrossRef] [Google Scholar]
- Ellison DC, Ramaty R. 1985. Shock acceleration of electrons and ions in solar flares. Astrophys J 298: 400–408. https://doi.org/10.1086/163623. [NASA ADS] [CrossRef] [Google Scholar]
- Grimani C, Fabi M, Finetti N, Laurenza M, Storini M. 2013. Spectral shape of solar particle events at energies above 100 MeV/n. J Phys: Conf Ser 409: 012159. https://doi.org/10.1088/1742-6596/409/1/012159. [CrossRef] [Google Scholar]
- Jiggens P, Clavie C, Evans H, O’Brien TP, Witasse O, Mishev AL, et al. 2019. In situ data and effect correlation during September 2017 solar particle event. Space Weather 17: 99–117. https://doi.org/10.1029/2018SW001936. [CrossRef] [Google Scholar]
- Kahler SW, Cliver EW, Ling AG. 2007. Validating the proton prediction system (PPS). J Atmos Sol-Terr Phys 69: 1–2. https://doi.org/10.1016/j.jastp.2006.06.009. [Google Scholar]
- Kahler SW, Ling AG. 2018. Relating solar energetic particle event fluences to peak intensities. Solar Phys 293: 30. https://doi.org/10.1007/s11207-018-1249-x. [Google Scholar]
- Kataoka R, Sato T, Kubo Y, Shiota D, Kuwabara T, Yashiro S, Yasuda H. 2014. Radiation dose forecast of WASAVIES during ground-level enhancement. Space Weather 12: 380–386. https://doi.org/10.1002/2014SW001053. [CrossRef] [Google Scholar]
- Laurenza M, Cliver EW, Hewitt J, Storini M, Ling AG, Balch CC, Kaiser ML. 2009. A technique for short-term warning of solar energetic particle events based on flare location, flare size, and evidence of particle escape. Space Weather 7: 4. https://doi.org/10.1029/2007SW000379. [Google Scholar]
- Malandraki O, Crosby N. 2018. Solar particle radiation storms forecasting and analysis, Springer International Publishing AG, Berlin, Germany. ISBN 978-3-319-60051-2. [Google Scholar]
- Núñez M. 2011. Predicting solar energetic proton events (E > 10 MeV). Space Weather 9: S07003. https://doi.org/10.1029/2010SW000640. [Google Scholar]
- Núñez M. 2015. Real-time prediction of the occurrence and intensity of the first hours of >100 MeV solar energetic proton events. Space Weather 13: 807–819. https://doi.org/10.1002/2015SW001256. [CrossRef] [Google Scholar]
- Papaioannou A, Anastasiadis A, Sandberg I, Georgoulis MK, Tsiropoula G, Tziotziou K, Jiggens P, Hilgers A. 2015. A novel forecasting system for solar particle events and flares (FORSPEF). J Phys: Conf Ser 632: 012075. https://doi.org/10.1088/1742-6596/632/1/012075. [CrossRef] [Google Scholar]
- Papaioannou A, Sandberg I, Anastasiadis A, Kouloumvakos A, Georgoulis MK, Tziotziou K, Tsiropoula G, Jiggens P, Hilgers A. 2016. Solar flares, coronal mass ejections and solar energetic particle event characteristics. J Space Weather Space Clim 6: A42. https://doi.org/10.1051/swsc/2016035. [CrossRef] [EDP Sciences] [Google Scholar]
- Papaioannou A, Anastasiadis A, Sandberg I, Jiggens P. 2018. Nowcasting of Solar Energetic Particle Events using near real-time Coronal Mass Ejection characteristics in the framework of the FORSPEF tool. J Space Weather Space Clim 8: A37. https://doi.org/10.1051/swsc/2018024. [CrossRef] [Google Scholar]
- Pomoell J, Aran A, Jacobs C, Rodríguez-Gasén R, Poedts S, Sanahuja B. 2015. Modelling large solar proton events with the shock-and-particle model – extraction of the characteristics of the MHD shock front at the cobpoint. J Space Weather Space Clim 5: A12. https://doi.org/10.1051/swsc/2015015. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Posner A. 2007. Up to 1-hour forecasting of radiation hazards from solar energetic ion events with relativistic electrons. Space Weather 5: S05001. https://doi.org/10.1029/2006SW000268. [NASA ADS] [CrossRef] [Google Scholar]
- Rodriguez JV, Sandberg I, Mewaldt RA, Daglis IA, Jiggens P. 2017. Validation of the effect of cross-calibrated GOES solar proton effective energies on derived integral fluxes by comparison with STEREO observations. Space Weather 15: 290–309. https://doi.org/10.1002/2016SW001533. [CrossRef] [Google Scholar]
- Sandberg I, Jiggens P, Heynderickx D, Daglis IA. 2014. Cross calibration of NOAA GOES solar proton detectors using corrected NASA IMP-8/GME data. Geophys Res Lett 41: 4435–4441. https://doi.org/10.1002/2014GL060469. [CrossRef] [Google Scholar]
- Sato T, Kataoka R, Shiota D, Kubo Y, Ishii M, et al. 2019. Nowcast and forecast of galactic cosmic ray (GCR) and solar energetic particle (SEP) fluxes in magnetosphere and ionosphere – extension of WASAVIES to Earth orbit. J Space Weather Space Clim 9: A9. https://doi.org/10.1051/swsc/2019006. [CrossRef] [Google Scholar]
- Smart DF, Shea MA. 1989. PPS-87 – a new event oriented solar proton prediction model. Adv Space Res 9: 281–284. https://doi.org/10.1016/0273-1177(89)90450-X. [CrossRef] [EDP Sciences] [Google Scholar]
- Smart DF, Shea MA. 1992. Modeling the time-intensity profile of solar flare generated particle fluxes in the inner heliosphere. Adv Space Res 12: 303–312. https://doi.org/10.1016/0273-1177(92)90120-M. [Google Scholar]
- Werner ALE, Yordanova E, Dimmock AP, Temmer M. 2019. Modeling the multiple CME interaction event on 6–9 September 2017 with WSA-ENLIL+Cone. Space Weather 17: 357–369. https://doi.org/10.1029/2018SW001993. [CrossRef] [Google Scholar]
- Wijsen N, Aran A, Pomoell J, Poedts S. 2019. Modelling three-dimensional transport of solar energetic protons in a corotating interaction region generated with EUHFORIA. Astron Astrophys 622: A28. https://doi.org/10.1051/0004-6361/201833958. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.