Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
|
|
---|---|---|
Article Number | 57 | |
Number of page(s) | 14 | |
Section | Agora | |
DOI | https://doi.org/10.1051/swsc/2020055 | |
Published online | 13 November 2020 |
- Afanasiev A, Vainio R. 2013. Monte Carlo simulation model of energetic proton transport through self-generated Alfvén waves. Astrophys J Suppl Ser 207: 29. https://doi.org/10.1088/0067-0049/207/2/29. [NASA ADS] [CrossRef] [Google Scholar]
- Afanasiev A, Vainio R, Kocharov L. 2014. The effect of stochastic re-acceleration on the energy spectrum of shock-accelerated protons. Astrophys J 790: 36. https://doi.org/10.1088/0004-637X/790/1/36. [NASA ADS] [CrossRef] [Google Scholar]
- Afanasiev A, Battarbee M, Vainio R. 2015. Self-consistent Monte Carlo simulations of proton acceleration in coronal shocks: Effect of anisotropic pitch-angle scattering of particles. A&A 584: 81. https://doi.org/10.1051/0004-6361/201526750. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Afanasiev A, Aran A, Vainio R, Rouillard A, Zucca P, Lario D, Barcewicz S, Siipola R, Pomoell J, Sanahuja B, Malandraki OE. 2018a. Modelling of shock-accelerated gamma-ray events. Astrophys Space Sci Libr 444: 157. https://doi.org/10.1007/978-3-319-60051-2_9. [CrossRef] [Google Scholar]
- Afanasiev A, Vainio R, Rouillard AP, Battarbee M, Aran A, Zucca P. 2018b. Modelling of proton acceleration in application to a ground level enhancement. A&A 614: 4. https://doi.org/10.1051/0004-6361/201731343. [CrossRef] [EDP Sciences] [Google Scholar]
- Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, et al. 2003. GEANT4 – a simulation toolkit. Nucl Instrum Methods Phys Res A 506: 250–303. https://doi.org/10.1016/S0168-9002(03)01368-8. [CrossRef] [Google Scholar]
- Bacchini F, Olshevsky V, Poedts S, Lapenta G. 2017. A new particle-in-cell method for modeling magnetized fluids. Comput Phys Comm 210: 79–91. https://doi.org/10.1016/j.cpc.2016.10.001. [CrossRef] [Google Scholar]
- Bennett AF. 1992. Inverse methods in physical oceanography, Cambridge University Press, Cambridge, England. ISBN-13: 978-0521055284. [CrossRef] [Google Scholar]
- Bieber JW, Evenson P, Dröge W, Pyle R, Ruffolo D, Rujiwarodom M, Tooprakai P, Khumlumlert T. 2004. Spaceship earth observations of the easter 2001 solar particle event. Astrophys J Lett 601: L103–L106. https://doi.org/10.1086/381801. [NASA ADS] [CrossRef] [Google Scholar]
- Blelly P-L. 2003. SpaceGRID study final report. SGD-SYS-DAT-TN-100-1.2. Issue 1.2. https://www.yumpu.com/en/document/read/50039475/final-report-rss-esa. [Google Scholar]
- Blelly P-L, Robineau A, Lilensten J, Lummerzheim D. 1996. 8-moment fluid models of the terrestrial high latitude ionosphere betweeen 100 and 3000 km. In: Solar terrestrial energy program ionospheric model handbook, Schunk RW (Ed.), Utah State Univ., Logan, pp. 53–72. https://www.bc.edu/content/dam/bc1/offices/ISR/SCOSTEP/Multimedia/other/ionospheric-models.pdf. [Google Scholar]
- Blelly P-L, Lathuillère C, Emery B, Lilensten J, Fontanari J, Alcaydé D. 2005. An extended TRANSCAR model including ionospheric convection: Simulation of EISCAT observations using inputs from AMIE. Ann Geophys 23: 419–431. https://doi.org/10.5194/angeo-23-419-2005. [CrossRef] [Google Scholar]
- Caballero-Lopez RA. 2016. An estimation of the yield and response functions for the mini neutron monitor. JGR (Space Phys) 121: 7461–7469. https://doi.org/10.1002/2016JA022690. [Google Scholar]
- Caballero-Lopez RA, Moraal H. 2012. Cosmic-ray yield and response functions in the atmosphere. JGR: Space Phys 117: A12103. https://doi.org/10.1029/2012JA017794. [Google Scholar]
- Desai M, Giacalone J. 2016. Large gradual solar energetic particle events. Living Rev Sol Phys 13: 3. https://doi.org/10.1007/s41116-016-0002-5. [CrossRef] [Google Scholar]
- Desorgher L. 2005. PLANETOCOSMICS software user manual issue 0.1, 2006-06-14, http://cosray.unibe.ch/~laurent/planetocosmics/doc/planetocosmics_sum.pdf. [Google Scholar]
- Echevin V, De Mey P, Evensen G. 2000. Horizontal and vertical structure of the representer functions for sea surface measurements in a coastal circulation model. J Phys Oceanogr 30: 2627–2635. https://doi.org/10.1175/1520-0485(2000)030<2627:HAVSOT>2.0.CO;2. [CrossRef] [Google Scholar]
- Evensen G. 2009. Data assimilation: The ensemble Kalman filter, Springer Science & Business Media, Berlin, Germany. ISBN 978-3-642-03711-5. [Google Scholar]
- Farrugia CJ, Jordanova VK, Thomsen MF, Lu G, Cowley SWH, Ogilvie KW. 2006. A two-ejecta event associated with a two-step geomagnetic storm. JGR: Space Phys 111: A11. https://doi.org/10.1029/2006JA011893. [Google Scholar]
- Fisk LA, Lee MA. 1980. Shock acceleration of energetic particles in corotating interaction regions in the solar wind. Astrophys J 237: 620–626. https://doi.org/10.1086/157907. [NASA ADS] [CrossRef] [Google Scholar]
- Heber B, Galsdorf D, Herbst K, Gieseler J, Labrenz J, et al. 2015. Mini neutron monitor measurements at the Neumayer III station and on the German research vessel Polarstern. J Phys: Conf Ser 632: 012057. https://doi.org/10.1088/1742-6596/632/1/012057. [CrossRef] [Google Scholar]
- Heck D, Knapp J, Capdevielle J, Schatz G, Thouw T. 1998. CORSIKA: A Monte Carlo code to simulate extensive air showers, Forschungszentrum Karlsruhe GmbH, Karlsruhe (Germany), V + 90 p. TIB Hannover, D-30167 Hannover. Bibcode: 1998cmcc.book.....H. [Google Scholar]
- Hurtaud Y, Peymirat C, Richmond AD. 2007. Modeling seasonal and diurnal effects on ionospheric conductances, region-2 currents, and plasma convection in the inner magnetosphere. JGR 112: A09217. https://doi.org/10.1029/2007JA012257. [CrossRef] [Google Scholar]
- Isavnin A. 2016. FRiED: A novel three-dimensional model of coronal mass ejections. Astrophys J 833: 267. https://doi.org/10.3847/1538-4357/833/2/267. [NASA ADS] [CrossRef] [Google Scholar]
- Kelly GS, Viljanen A, Beggan CD, Thomson AWP. 2017. Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms. Space Weather 15: 99–114. https://doi.org/10.1002/2016SW001469. [CrossRef] [Google Scholar]
- Kilpua EKJ, Olspert N, Grigorievskiy A, Käpylä MJ, Tanskanen EI, et al.. 2015. Statistical study of strong and extreme geomagnetic disturbances and solar cycle characteristics. Astrophys J 806: 272. https://doi.org/10.1088/0004-637X/806/2/272. [NASA ADS] [CrossRef] [Google Scholar]
- Labrenz J, Burmeister S, Berger T, Heber B, Reitz G. 2015. Matroshka DOSTEL measurements onboard the International Space Station (ISS). J Space Weather Space Clim. 5: A38. https://doi.org/10.1051/swsc/2015039. [CrossRef] [EDP Sciences] [Google Scholar]
- Lario D, Simnett GM. 2004. Solar energetic particle variations. In: Solar variability and its effects on climate, geophysical monograph, Vol. 141, pp. 195–216. https://doi.org/10.1029/141GM14. [CrossRef] [Google Scholar]
- Liu YD, Hu H, Wand R, Yand Z, Zhu B, Liu YA, Luhman JG, Richardson JD. 2015. Plasma and magnetic field characteristics of solar coronal mass ejections in relation to geomagnetic storm intensity and variability. Astrophys J Lett 809: L34. https://doi.org/10.1088/2041-8205/809/2/L34. [CrossRef] [Google Scholar]
- Liu J, Ye Y, Shen C, Wang Y, Erdélyi R. 2018. A new tool for CME arrival time prediction using machine learning algorithms: CAT-PUMA. Astrophys J 855: 109. https://doi.org/10.3847/1538-4357/aaae69. [CrossRef] [Google Scholar]
- Lumme E, Pomoell J, Kilpua EKJ. 2017. Optimization of photospheric electric field estimates for accurate retrieval of total magnetic energy injection. Sol Phys 292: A191. https://doi.org/10.1007/s11207-017-1214-0. [Google Scholar]
- Magdalenić J, Marqué C, Krupar V, Mierla M, Zhukov AN, Rodriguez L, Maksimović M, Cecconi B. 2014. Tracking the CME-driven shock wave on 2012 March 5 and radio triangulation of associated radio emission. Astrophys J 791: 115. https://doi.org/10.1088/0004-637X/791/2/115. [Google Scholar]
- Marchaudon A, Blelly P-L. 2015. A new interhemispheric 16-moment model of the plasmasphere-ionosphere system: IPIM. JGR: Space Phys 120: 5728–5745. https://doi.org/10.1002/2015JA021193. [Google Scholar]
- Millas D, Innocenti M.E, Laperre B, Raeder J, Poedts S, Lapenta G. 2020. The effectiveness of data assimilation in space weather forecasting: Heliospheric and magnetospheric applications via MHD simulations. Front Astron Space Sci Stellar Solar Phys 7: 571286. https://doi.org/10.3389/fspas.2020.571286. [CrossRef] [Google Scholar]
- Mishev A, Usoskin I. 2015. Numerical model for computation of effective and ambient dose equivalent at flight altitudes. Application for dose assessment during GLEs. J Space Weather Space Clim 5: A10. https://doi.org/10.1051/swsc/2015011. [CrossRef] [EDP Sciences] [Google Scholar]
- Möller T, Burda O, Burmeister S, Heber B, Langner F, Wissmann F. 2012. In-field calibration of the Navigation Dosimetry System (NAVIDOS) during solar minimum conditions. Astrophys Space Sci Trans 8: 45–49. https://doi.org/10.5194/astra-8-45-2012. [CrossRef] [Google Scholar]
- Odstrcil D. 2003. Modeling 3-D solar wind structure. Adv Space Res 32(4): 497–506. https://doi.org/10.1016/S0273-1177(03)00332-6. [NASA ADS] [CrossRef] [Google Scholar]
- O’Neill PM. 2010. Badhwar–O’Neill 2010 galactic cosmic ray flux model – revised. IEEE Trans Nucl Sci 57(6): 3148–3153. https://doi.org/10.1109/TNS.2010.2083688. [Google Scholar]
- Owens MJ, Forsyth RJ. 2013. The heliospheric magnetic field. Living Rev Sol Phys 10: 5. https://doi.org/10.12942/lrsp-2013-5. [NASA ADS] [CrossRef] [Google Scholar]
- Pinto RF, Rouillard AP. 2017. A multiple flux-tube solar wind model. Astrophys J 838: 89. https://doi.org/10.3847/1538-4357/aa6398. [CrossRef] [Google Scholar]
- Poedts S. 2018. Forecasting space weather with EUHFORIA in the Virtual Space Weather Modeling Centre. Plasma Phys Control Fusion 61: 014011. https://doi.org/10.1088/1361-6587/aae048. [CrossRef] [Google Scholar]
- Poedts S, Kochanov A, Lani A, Scolini C, Verbeke C, et al. 2020. The Virtual Space Weather Modelling Centre. J Space Weather Space Clim 10: A14. https://doi.org/10.1051/swsc/2020012. [CrossRef] [EDP Sciences] [Google Scholar]
- Pomoell J, Vainio R. 2012. Influence of solar wind heating formulations on the properties of shocks in the corona. Astrophys J 745: 151. https://doi.org/10.1088/0004-637X/745/2/151. [CrossRef] [Google Scholar]
- Pomoell J, Poedts S. 2018. EUHFORIA: European heliospheric forecasting information asset. J Space Weather Space Clim 8: A35. https://doi.org/10.1051/swsc/2018020. [CrossRef] [Google Scholar]
- Pomoell J, Aran A, Jacobs C, Rodríguez-Gasén R, Poedts S, Sanahuja B. 2015. Modelling large solar proton events with the shock-and-particle model. Extraction of the characteristics of the MHD shock front at the cobpoint. J Space Weather Space Clim 5: A12. https://doi.org/10.1051/swsc/2015015. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Pomoell J, Lumme E, Kilpua E. 2019. Time-dependent data-driven modeling of active region evolution using energy-optimized photospheric electric fields. Sol Phys 294: 41. https://doi.org/10.1007/s11207-019-1430-x. [Google Scholar]
- Price DJ, Pomoell J, Lumme E, Kilpua EKJ. 2019. Time-dependent data-driven coronal simulations of AR 12673 from emergence to eruption. A&A 628: A114. https://doi.org/10.1051/0004-6361/201935535. [CrossRef] [EDP Sciences] [Google Scholar]
- Raeder J, Cramer WD, Germaschewski K, Jensen J. 2017. Using OpenGGCM to compute and separate magnetosphere magnetic perturbations measured on board low earth orbiting satellites. Space Sci Rev 206: 601. https://doi.org/10.1007/s11214-016-0304-x. [CrossRef] [Google Scholar]
- Riley P. 2012. On the probability of occurrence of extreme space weather events. Space Weather 10: S02012. https://doi.org/10.1029/2011SW000734. [NASA ADS] [CrossRef] [Google Scholar]
- Samara E, Pinto FP, Magdalenić J, Jercic V, Scolini C, Wijsen N, Jebaraj IC, Rodriguez L, Poedts S. 2020. Implementing the MULTI-VP coronal model in EUHFORIA: Results and comparisons with the WSA coronal model. A&A. Submitted. [Google Scholar]
- Schrijver K, Kauristie K, Aylward A, Denardini CM, Gibson SE, et al. 2015. Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS. Adv Space Res 55(12): 2745–2807. https://doi.org/10.1016/j.asr.2015.03.023. [NASA ADS] [CrossRef] [Google Scholar]
- Scolini C, Rodriguez L, Mierla M, Pomoell J, Poedts S. 2019. Observation-based modelling of magnetised coronal mass ejections with EUHFORIA. A&A 626: A122. https://doi.org/10.1051/0004-6361/201935053. [CrossRef] [EDP Sciences] [Google Scholar]
- Scolini C, Chané E, Temmer M, Kilpua E, Dissauer K, et al. 2020. CME–CME interactions as sources of CME geoeffectiveness: The formation of the complex ejecta and intense geomagnetic storm in 2017 early September. Astrophys J Suppl Ser 247(1): 21. https://doi.org/10.3847/1538-4365/ab6216. [CrossRef] [Google Scholar]
- Shiota D, Kataoka R. 2016. Magnetohydrodynamic simulation of interplanetary propagation of multiple coronal mass ejections with internal magnetic flux rope (SUSANOO-CME). Space Weather 14(2): 56–75. https://doi.org/10.1002/2015SW001308. [NASA ADS] [CrossRef] [Google Scholar]
- Skandrani C, Innocenti ME, Bettarini L, Crespon F, Lamouroux J, Lapenta G. 2014. Flip-mhd-based model sensitivity analysis. Nonlinear Process Geophys 21: 539–553. https://doi.org/10.5194/npg-21-539-2014. [CrossRef] [Google Scholar]
- Thomson AWP, McKay AJ, Clarke E, Reay S. 2005. Surface electric fields and geomagnetically induced currents in the Scottish Power grid during the 30 October 2003 geomagnetic storm. Space Weather 3: S11002. https://doi.org/10.1029/2005SW000156. [Google Scholar]
- Tóth G, Sokolov IV, Gombosi TI, Chesney DR, Robert Clauer C, et al. 2005. Space weather modeling framework: A new tool for the space science community. JGR Space Physics 110: A12226. https://doi.org/10.1029/2005JA011126. [Google Scholar]
- Vainio R, Laitinen T. 2007. Monte Carlo simulations of coronal diffusive shock acceleration in self-generated turbulence. Astrophys J 658: 622. https://doi.org/10.1086/510284. [CrossRef] [Google Scholar]
- Vainio R, Pönni A, Battarbee M, Koskinen EJ, Afanasiev A, Laitinen T. 2014. A semi-analytical foreshock model for energetic storm particle events inside 1 AU. J Space Weather Space Clim 4: A08. https://doi.org/10.1051/swsc/2014005. [CrossRef] [EDP Sciences] [Google Scholar]
- Van der Holst B, Sokolov IV, Meng X, Jin M, Manchester WB IV, Tóth G, Gombosi TI. 2014. Alfvén Wave Solar Model (AWSoM): Coronal heating. Astrophys J 782: 81. https://doi.org/10.1088/0004-637X/782/2/81. [NASA ADS] [CrossRef] [Google Scholar]
- Verbeke C, Pomoell J, Poedts S. 2019. The evolution of coronal mass ejections in the inner heliosphere: Implementing the Spheromak model with EUHFORIA. A&A 627: A111. https://doi.org/10.1051/0004-6361/201834702. [CrossRef] [EDP Sciences] [Google Scholar]
- Vršnak B, Magdalenić J, Zlobec P. 2004. Band-splitting of coronal and interplanetary type II bursts. III. Physical conditions in the upper corona and interplanetary space. A&A 413: 753. https://doi.org/10.1051/0004-6361:20034060. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Webb DF, Howard TA. 2012. Coronal mass ejections: Observations. Living Rev Sol Phys 9: A3. https://doi.org/10.12942/lrsp-2012-3. [Google Scholar]
- Wijsen N. 2020. PARADISE: A model for energetic particle transport in the solar wind. Dissertation presented in partial fulfilment of the requirements for the degree of Doctor of Science (PhD): Mathematics (KU Leuven) and the degree of Doctor of Physics (Universitat de Barcelona). [Google Scholar]
- Wijsen N, Aran A, Poedts S, Pomoell J. 2019a. Modelling three-dimensional transport of solar energetic protons in a corotating interaction region generated with EUHFORIA. A&A 622: A28. https://doi.org/10.1051/0004-6361/201833958. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Wijsen N, Aran A, Pomoell J, Poedts S. 2019b. The interplanetary spread of solar energetic protons near a high-speed solar wind stream. A&A 634: A47. https://doi.org/10.1051/0004-6361/201935139. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Wintoft P, Wik M, Viljanen A. 2015. Solar wind driven empirical forecast models of the time derivative of the ground magnetic field. J Space Weather Space Clim 5: A7. https://doi.org/10.1051/swsc/2015008. [CrossRef] [EDP Sciences] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.