Open Access
Issue |
J. Space Weather Space Clim.
Volume 11, 2021
Topical Issue - Space Weather Instrumentation
|
|
---|---|---|
Article Number | 20 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/swsc/2021004 | |
Published online | 01 March 2021 |
- Aime C, Theys C, Rougeot R, Lantéri H. 2019. Principle of Fredholm image reconstruction in the vignetting zone of an externally occulted solar coronagraph: Application to ASPIICS. A&A 622: A212. https://doi.org/10.1051/0004-6361/201833843. [EDP Sciences] [Google Scholar]
- Aschwanden MJ. 2009. 4-D modeling of CME expansion and EUV dimming observed with STEREO/EUVI. Ann Geophys 27(8): 3275–3286. https://doi.org/10.5194/angeo-27-3275-2009, http://www.ann-geophys.net/27/3275/2009/. [Google Scholar]
- Aschwanden MJ, Nitta NV, Wuelser J-P, Lemen JR, Sandman A, Vourlidas A, Colaninno RC. 2009. First measurements of the mass of coronal mass ejections from the EUV dimming observed with stereo EUVI A + B spacecraft. Astrophys J 706(1): 376–392. https://doi.org/10.1088/0004-637X/706/1/376, URL http://stacks.iop.org/0004-637X/706/i=1/a=376?key=crossref.88f60571a09db37b8197341ac713fd1a. [Google Scholar]
- Barlyaeva T, Wojak J, Lamy P, Boclet B, Toth I. 2018. Periodic behaviour of coronal mass ejections, eruptive events, and solar activity proxies during solar cycles 23 and 24. J Atmos Sol-Terr Phys 177: 12–28. https://doi.org/10.1016/j.jastp.2018.05.012. [Google Scholar]
- Bateman G. 1978. MHD instabilities. MIT Press, Cambridge, Massachusetts. ISBN 9780262021319. [Google Scholar]
- Bein BM, Berkebile-Stoiser S, Veronig AM, Temmer M, Muhr N, Kienreich I, Utz D, Vršnak B. 2011. Impulsive acceleration of coronal mass ejections. I. Statistics and coronal mass ejection source region characteristics. Astrophys J 738(2): 191. https://doi.org/10.1088/0004-637X/738/2/191, URL http://stacks.iop.org/0004-637X/738/i=2/a=191?key=crossref.f0398b90f91cbeb1263748f98e279bbd. [NASA ADS] [CrossRef] [Google Scholar]
- Byrne JP, Morgan H, Seaton DB, Bain HM, Habbal SR. 2014. Bridging EUV and white-light observations to inspect the initiation phase of a “two-stage” solar eruptive event. Sol Phys 289(12): 4545–4562. https://doi.org/10.1007/s11207-014-0585-8. [CrossRef] [Google Scholar]
- Chamberlin PC. 2016. Measuring Solar Doppler Velocities in the He ii 30.38 nm Emission Using the EUV Variability Experiment (EVE). Sol Phys 291: 1665–1679. https://doi.org/10.1007/s11207-016-0931-0. [Google Scholar]
- Chamberlin PC, Woods TN, Didkovsky L, Eparvier FG, Jones AR, et al. 2018. Solar ultraviolet irradiance observations of the solar flares during the intense September 2017 storm period. Space Weather 16(10): 1470–1487. https://doi.org/10.1029/2018SW001866, URL https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018SW001866. [CrossRef] [Google Scholar]
- Chamberlin PC, Woods TN, Eparvier FG. 2008. Flare irradiance spectral model (FISM): Flare component algorithms and results. Space Weather 6(5): n/a–n/a. https://doi.org/10.1029/2007SW000372, http://doi.wiley.com/10.1029/2007SW000372. [Google Scholar]
- Chikunova G, Dissauer K, Podladchikova T, Veronig AM. 2020. Coronal dimmings associated with coronal mass ejections on the solar limbApJ 896: 17. https://iopscience.iop.org/article/10.3847/1538-4357/ab9105. [Google Scholar]
- Crotser DA, Woods TN, Eparvier FG, Triplett MA, Woodraska DL. 2007. SDO-EVE EUV spectrograph optical design and performance. In: Solar physics and space weather instrumentation II, Fineschi S, Viereck RA (Eds.), Vol. 6689, 66890M, SPIE. https://doi.org/10.1117/12.732592. [Google Scholar]
- D’Huys E, Seaton DB, Poedts S, Berghmans D. 2014. Observational characteristics of coronal mass ejections without low-coronal signatures. Astrophys J 795(1): 49. https://doi.org/10.1088/0004-637X/795/1/49. [NASA ADS] [CrossRef] [Google Scholar]
- Dissauer K, Veronig AM, Temmer M, Podladchikova T. 2019. Statistics of coronal dimmings associated with coronal mass ejections. II. Relationship between coronal dimmings and their associated CMEs. Astrophys J 874(2): 123. https://doi.org/10.3847/1538-4357/ab0962, URL http://stacks.iop.org/0004-637X/874/i=2/a=123?key=crossref.833720587c5d6f444910c7dec84f30d9, http://arxiv.org/abs/1810.01589. [Google Scholar]
- Dissauer K, Veronig AM, Temmer M, Podladchikova T, Vanninathan K. 2018. Statistics of coronal dimmings associated with coronal mass ejections. I. Characteristic dimming properties and flare association. Astrophys J 863(2): 169. 10.3847/1538-4357/aad3c6, URL http://stacks.iop.org/0004-637X/863/i=2/a=169?key=crossref.04b1e3af0e5af3d849583869b3fb6f27. [Google Scholar]
- Fan Y. 2016. Modeling the initiation of the 2006 December 13 coronal mass ejection in AR 10930: The structure and dynamics of the erupting flux rope. Astrophys J 824(93): 12. https://doi.org/10.3847/0004-637x/824/2/93, http://arxiv.org/abs/1604.05687. [Google Scholar]
- Forbes TG, Seaton DB, Reeves KK. 2018. Reconnection in the post-impulsive phase of solar flares. Astrophys J 858: 70. https://doi.org/10.3847/1538-4357/aabad4. [Google Scholar]
- Forsyth RJ, Bothmer V, Cid C, Crooker NU, Horbury TS, et al. 2006. ICMEs in the inner heliosphere: Origin, evolution and propagation effects: Report of working group G. Space Sci Rev 123: 383–416. https://doi.org/10.1007/s11214-006-9022-0. [Google Scholar]
- Fuller J, Gibson SE. 2009. A survey of coronal cavity density profiles. Astrophys J 700: 1205–1215. https://doi.org/10.1088/0004-637X/700/2/1205. [Google Scholar]
- Gopalswamy N, Yashiro S, Michalek G, Stenborg G, Vourlidas A, Freeland S, Howard RA. 2009. The SOHO/LASCO CME catalog. Earth Moon Planet 104: 295–313. https://doi.org/10.1007/s11038-008-9282-7. [NASA ADS] [CrossRef] [Google Scholar]
- Green LM, Török T, Vršnak B, Manchester W, Veronig A. 2018. The origin, early evolution and predictability of solar eruptions. Space Sci Rev 214(1): 46. https://doi.org/10.1007/s11214-017-0462-5. [NASA ADS] [CrossRef] [Google Scholar]
- Hood AW, Priest ER. 1981. Critical conditions for magnetic instabilities in force-free coronal loops. Geophys Astrophys Fluid Dyn 17(1): 297–318. https://doi.org/10.1080/03091928108243687. [Google Scholar]
- Howard RA, Moses JD, Vourlidas A, Newmark JS, Socker DG, et al. 2008. Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci Rev 136(1–4): 67–115. https://doi.org/10.1007/s11214-008-9341-4, http://link.springer.com/10.1007/s11214-008-9341-4. [Google Scholar]
- Hudson HS, Woods TN, Chamberlin PC, Fletcher L, Del Zanna G, Didkovsky L, Labrosse N, Graham D. 2011. The EVE doppler sensitivity and flare observations. Sol Phys 273(1): 69–80. https://doi.org/10.1007/s11207-011-9862-y, http://link.springer.com/10.1007/s11207-011-9862-y. [Google Scholar]
- ISO 12232. 2019. Photography – digital still cameras – determination of exposure index, iso speed ratings, standard output sensitivity, and recommended exposure index. Tech. rep. International Organization for Standardization, Geneva, CH. [Google Scholar]
- Kaiser ML, Kucera TA, Davila JM, St. Cyr OC, Guhathakurta M, Christian E. 2007. The STEREO mission: An introduction. Space Sci Rev 136(1–4): 5–16. https://doi.org/10.1007/s11214-007-9277-0, http://link.springer.com/10.1007/s11214-007-9277-0. [Google Scholar]
- Kay C, Gopalswamy N. 2018. The effects of uncertainty in initial CME input parameters on deflection, rotation, Bz, and arrival time predictions. J Geophys Res: Space Phys 123: 7220–7240. https://doi.org/10.1029/2018JA025780. [Google Scholar]
- Kay C, Opher M. 2015. The heliocentric distance where the deflections and rotations of solar coronal mass ejections occur. Astrophys J Lett 811: L36. https://doi.org/10.1088/2041-8205/811/2/L36. [Google Scholar]
- Kay C, Opher M, Colaninno RC, Vourlidas A. 2016. Using ForeCAT deflections and rotations to constrain the early evolution of CMEs. Astrophys J 827(1): 70. https://doi.org/10.3847/0004-637X/827/1/70, URL http://arxiv.org/abs/1606.03460 http://dx.doi.org/10.3847/0004-637X/827/1/70, http://stacks.iop.org/0004-637X/827/i=1/a=70?key=crossref.fd824e09edb6a2c662122ed885296355. [Google Scholar]
- Kay C, Opher M, Evans RM. 2013. Forecasting a coronal mass ejection’s altered trajectory: ForeCAT. Astrophys J 775(1): 5. https://doi.org/10.1088/0004-637X/775/1/5, http://stacks.iop.org/0004-637X/775/i=1/a=5?key=crossref.60dd88082ab7f70bf71897944c86b722. [Google Scholar]
- Kay C, Opher M, Evans RM. 2015. Global trends of CME deflections based on CME and solar parameters. Astrophys J 805(2): 168. https://doi.org/10.1088/0004-637X/805/2/168, http://stacks.iop.org/0004-637X/805/i=2/a=168?key=crossref.7f7c0fc9c0ff14b3f341631e5120e261. [Google Scholar]
- Kay CD. 2016. ForeCAT – A model for magnetic deflections of coronal mass ejections. PhD thesis, Boston University. https://search.proquest.com/docview/1767403214. [Google Scholar]
- Kliem B, Török T. 2006. Torus instability. Phys Rev Lett 96(1): 4. https://doi.org/10.1103/PhysRevLett.96.255002. [Google Scholar]
- Kobayashi K, Cirtain J, Winebarger AR, Korreck K, Golub L, et al. 2014. The High-Resolution Coronal Imager (Hi-C). Sol Phys 289(11): 4393–4412. https://doi.org/10.1007/s11207-014-0544-4, http://link.springer.com/10.1007/s11207-014-0544-4. [Google Scholar]
- Koutchmy S. 1988. Space-born coronagraphy. Space Sci Rev 47: 95–143. http://articles.adsabs.harvard.edu/pdf/1988SSRv...47...95 K. [Google Scholar]
- Lemen JR, Title AM, Akin DJ, Boerner PF, Chou C, et al. 2012. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol Phys 275(1–2): 17–40. https://doi.org/10.1007/s11207-011-9776-8, http://link.springer.com/10.1007/s11207-011-9776-8. [Google Scholar]
- Lin AC, Nightingale RW, Tarbell TD. 2001. Diffraction pattern analysis of bright trace flares. Sol Phys 198(2): 385–398. https://doi.org/10.1023/A:1005213527766. [Google Scholar]
- Martínez-Galarce D, Harvey J, Bruner M, Lemen J, Gullikson E, Soufli R, Prast E, Khatri S. 2010. A novel forward-model technique for estimating EUV imaging performance: Design and analysis of the SUVI telescope. In: Space Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ray, Vol. 7732, 773,237–1. https://doi.org/10.1117/12.864577. [Google Scholar]
- Mason JP, Attie R, Arge CN, Thompson B, Woods TN. 2019. The SDO/EVE solar irradiance coronal dimming index catalog. I. Methods and algorithms. Astrophys J Suppl Ser 244(1): 13. https://doi.org/10.3847/1538-4365/ab380e, URL https://iopscience.iop.org/article/10.3847/1538-4365/ab380e. [Google Scholar]
- Mason JP, Baumgart M, Rogler B, Downs C, Williams M, et al. 2017. MinXSS-1 CubeSat on-orbit pointing and power performance: The first flight of the blue canyon technologies XACT 3-axis attitude determination and control system. J Small Satellites 6(3): 651–662. URL http://arxiv.org/abs/1706.06967, https://jossonline.com/letters/minxss-1-cubesat-on-orbit-pointing-and-power-performance-the-first-flight-of-the-blue-canyon-technologies-xact-3-axis-attitude-determination-and-control-system/. [Google Scholar]
- Mason JP, Woods TN, Caspi A, Thompson BJ, Hock RA. 2014. Mechanisms and observations of coronal dimming for the 2010 August 7 event. Astrophys J 789(1): 61. https://doi.org/10.1088/0004-637X/789/1/61, http://adsabs.harvard.edu/abs/2014ApJ...789...61 M. [NASA ADS] [CrossRef] [Google Scholar]
- Mason JP, Woods TN, Webb DF, Thompson BJ, Colaninno RC, Vourlidas A. 2016. Relationship of EUV irradiance coronal dimming slope and depth to coronal mass ejection speed and mass. Astrophys J 830(20): 12. https://doi.org/10.3847/0004-637X/830/1/20, URL http://stacks.iop.org/0004-637X/830/i=1/a=20?key=crossref.2d956aff9237fc3069d8edd80c37186d. [NASA ADS] [CrossRef] [Google Scholar]
- Mierla M, Seaton DB, Berghmans D, Chifu I, De Groof A, Inhester B, Rodriguez L, Stenborg G, Zhukov AN. 2013. Study of a prominence eruption using PROBA2/SWAP and STEREO/EUVI data. Sol Phys 286(1): 241–253. https://doi.org/10.1007/s11207-012-9965-0, URL http://link.springer.com/10.1007/s11207-012-9965-0. [CrossRef] [Google Scholar]
- O’Hara JP, Mierla M, Podladchikova O, D’Huys E, West MJ. 2019. Exceptional extended field-of-view observations by PROBA2 /SWAP on 2017 April 1 and 3. Astrophys J 883(1): 59. https://doi.org/10.3847/1538-4357/ab3b08, URL http://dx.doi.org/10.3847/1538-4357/ab3b08. [CrossRef] [Google Scholar]
- Pong C. 2018. On-orbit performance and operation of the attitude and pointing control subsystems on ASTERIA. In: AIAA/USU Conference on Small Satellites, Logan, UT. URL https://digitalcommons.usu.edu/smallsat/2018/all2018/361. [Google Scholar]
- Sarkar R, Srivastava N, Mierla M, West MJ, D’Huys E. 2019. Evolution of the coronal cavity from the quiescent to eruptive phase associated with coronal mass ejection. Astrophys J 875: 101. https://doi.org/10.3847/1538-4357/ab11c5. [CrossRef] [Google Scholar]
- Schrijver CJ, Elmore C, Kliem B, Torok T, Title AM. 2008. Observations and modeling of the early acceleration phase of erupting filaments involved in coronal mass ejections. Astrophys J 674(1): 586–595. https://doi.org/10.1086/524294. [CrossRef] [Google Scholar]
- Seaton DB, Berghmans D, Nicula B, Halain JP, De Groof A, et al. 2013. The SWAP EUV imaging telescope part I: Instrument overview and pre-flight testing. Sol Phys 286(1): 43–65. https://doi.org/10.1007/s11207-012-0114-6. [CrossRef] [Google Scholar]
- Seaton DB, Darnel JM. 2018. Observations of an eruptive solar flare in the extended EUV solar corona. Astrophys J Lett 852: L9. https://doi.org/10.3847/2041-8213/aaa28e. [NASA ADS] [CrossRef] [Google Scholar]
- Tadikonda SK, Freesland DC, Minor RR, Seaton DB, Comeyne GJ, Krimchansky A. 2019. Coronal imaging with the solar ultraviolet imager. Sol Phys 294: 28. https://doi.org/10.1007/s11207-019-1411-0. [CrossRef] [Google Scholar]
- Thompson BJ, Cliver EW, Nitta NV, Delannée C, Delaboudiniere JP. 2000. Coronal dimmings and energetic CMEs in April–May 1998. Geophys Res Lett 27(10): 1431–1434. [NASA ADS] [CrossRef] [Google Scholar]
- Török T, Kliem B. 2007. Numerical simulations of fast and slow coronal mass ejections. Astron Nachr 328(8): 743–746. https://doi.org/10.1002/asna.200710795. [CrossRef] [Google Scholar]
- Veronig AM, Podladchikova T, Dissauer K, Temmer M, Seaton DB, Long D, Guo J, Vršnak B, Harra L, Kliem B. 2018. Genesis and impulsive evolution of the 2017 September 10 coronal mass ejection. Astrophys J 868: 107. https://doi.org/10.3847/1538-4357/aaeac5, URL https://doi.org/10.3847/1538-4357/aaeac5. [NASA ADS] [CrossRef] [Google Scholar]
- Vršnak B, Maričić D, Stanger AL, Veronig AM, Temmer M, Roša D. 2007. Acceleration phase of coronal mass ejections: I. Temporal and spatial scales. Sol Phys 241(1): 85–98. https://doi.org/10.1007/s11207-006-0290-3, https://link.springer.com/article/10.1007/s11207-006-0290-3. [NASA ADS] [CrossRef] [Google Scholar]
- Webb DF, Howard TA. 2012. Coronal mass ejections: Observations. Living Rev Sol Phys 9: 3. https://doi.org/10.12942/lrsp-2012-3, URL http://link.springer.com/10.12942/lrsp-2012-3. [Google Scholar]
- Woods TN, Eparvier FG, Hock RA, Jones AR, Woodraska DL, et al. 2012. Extreme ultraviolet variability experiment (EVE) on the solar dynamics observatory (SDO): Overview of science objectives, instrument design, data products, and model developments. Sol Phys 275: 115–143. https://doi.org/10.1007/s11207-009-9487-6, http://link.springer.com/10.1007/s11207-009-9487-6. [NASA ADS] [CrossRef] [Google Scholar]
- Woods TN, Hock RA, Eparvier FG, Jones AR, Chamberlin PC, et al. 2011. New solar extreme-ultraviolet irradiance observations during flares. Astrophys J 739: 59. https://doi.org/10.1088/0004-637X/739/2/59. [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.