Open Access
Issue |
J. Space Weather Space Clim.
Volume 11, 2021
Topical Issue - Geomagnetic Storms and Substorms: a Geomagnetically Induced Current perspective
|
|
---|---|---|
Article Number | 37 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/swsc/2021022 | |
Published online | 18 June 2021 |
- Ádám A, Prácser E, Wesztergom V. 2012. Estimation of the electric resistivity distribution (EURHOM) in the European lithosphere in the frame of the EURISGIC WP2 project. Acta Geod Geoph Hung 47(4): 377–387. https://doi.org/10.1556/AGeod.47.2012.4.1. [Google Scholar]
- Albertson VD, Kappenman JG, Mohan N, Skarbakka GA. 1981. Load-flow studies in the presence of geomagnetically-induced currents. IEEE Trans Power Appar Syst PAS-100(2): 594–607. https://doi.org/10.1109/TPAS.1981.316916. [CrossRef] [Google Scholar]
- Amm O. 1997. Ionospheric elementary current systems in spherical coordinates and their application. J Geomag Geoelectr 49: 947–955. https://doi.org/10.5636/jgg.49.947. [CrossRef] [Google Scholar]
- Bailey RL, Halbedl TS, Schattauer I, Römer A, Achleitner G, Beggan CD, Wesztergom V, Egli R, Leonhardt R. 2017. Modelling geomagnetically induced currents in midlatitude Central Europe using a thin-sheet approach. Ann Geophys 35(3): 751–761. https://doi.org/10.5194/angeo-35-751-2017. [CrossRef] [Google Scholar]
- Bailey RL, Halbedl TS, Schattauer I, Achleitner G, Leonhardt R. 2018. Validating GIC models with measurements in Austria: Evaluation of accuracy and sensitivity to input parameters. Space Weather 16(7): 887–902. https://doi.org/10.1029/2018SW001842. [CrossRef] [Google Scholar]
- Banks R, Beamish D, Geake M. 1983. Magnetic variation anomalies in northern England and southern Scotland. Nature 303: 516–518. https://doi.org/10.1038/303516a0. [CrossRef] [Google Scholar]
- Banks R, Livelybrooks D, Jones P, Longstaff R. 1996. Causes of high crustal conductivity beneath the Iapetus suture zone in Great Britain. Geophys J Int 124: 43–455. https://doi.org/10.1111/j.1365-246X.1996.tb07031.x. [CrossRef] [Google Scholar]
- Beamish D. 2013. The bedrock electrical conductivity map of the UK. J Appl Geophys 96: 87–97. https://doi.org/10.1016/j.jappgeo.2013.06.001. [CrossRef] [Google Scholar]
- Beamish D, White J. 2012. Mapping and predicting electrical conductivity variations across southern England using airborne electromagnetic data. Quart J Eng Geol Hydrogeol 35: 99–110. https://doi.org/10.1144/1470-9236/11-026. [CrossRef] [Google Scholar]
- Beamish D, Clark T, Clarke E, Thomson A. 2002. Geomagnetically induced currents in the UK: Geomagnetic variations and surface electric fields. J Atmos Sol-Terr Phys 64(16): 1779–1792. https://doi.org/10.1016/s1364-6826(02)00127-x. [CrossRef] [Google Scholar]
- Beggan C. 2015. Sensitivity of geomagnetically induced currents to varying auroral electrojet and conductivity models. Earth Planets Space 67(1): 1–12. https://doi.org/10.1186/s40623-014-0168-9. [CrossRef] [Google Scholar]
- Beggan CD, Marple SR. 2018. Building a Raspberry Pi school magnetometer network in the UK. Geosci Commun 1(1): 25–34. https://doi.org/10.5194/gc-1-25-2018. [CrossRef] [Google Scholar]
- Beggan CD, Beamish D, Richards A, Kelly GS, Thomson AWP. 2013. Prediction of extreme geomagnetically induced currents in the UK high-voltage network. Space Weather 11: 407–419. https://doi.org/10.1002/swe.20065. [CrossRef] [Google Scholar]
- Blake SP, Gallagher PT, McCauley J, Jones AG, Hogg C, Campanyà J, Beggan CD, Thomson AWP, Kelly GS, Bell D. 2016. Geomagnetically induced currents in the Irish power network during geomagnetic storms. Space Weather 14(12): 1136–1154. https://doi.org/10.1002/2016sw001534. [CrossRef] [Google Scholar]
- Blake SP, Gallagher PT, Campanyà J, Hogg C, Beggan CD, Thomson AP, Richardson GS, Bell D. 2018. A detailed model of the Irish high voltage power network for simulating GICs. Space Weather 16: 1770–1783. https://doi.org/10.1029/2018SW001926. [CrossRef] [Google Scholar]
- Blum CC, White TC, Sauter EA, Stewart DC, Bedrosian PA, Love JJ. 2017. Geoelectric monitoring at the Boulder magnetic observatory. Geosci Instrum Methods Data Syst 6(2): 447–452. https://doi.org/10.5194/gi-6-447-2017. [CrossRef] [Google Scholar]
- Bolduc L. 2002. GIC observations and studies in the Hydro-Québec power system. J Atmos Sol-Terr Phys 64: 1793–1802. https://doi.org/10.1016/S1364-6826(02)00128-1. [Google Scholar]
- Bonner LR, Schultz A. 2017. Rapid prediction of electric fields associated with geomagnetically induced currents in the presence of three-dimensional ground structure: Projection of remote magnetic observatory data through magnetotelluric impedance tensors. Space Weather 15: 204–227. https://doi.org/10.1002/2016SW001535. [CrossRef] [Google Scholar]
- Boteler DH. 2006. The super storms of August/September 1859 and their effects on the telegraph system. Adv Space Res 38(2): 159–172. https://doi.org/10.1016/j.asr.2006.01.013. [NASA ADS] [CrossRef] [Google Scholar]
- Boteler DH. 2019. A 21st century view of the March 1989 magnetic storm. Space Weather 17: 1–15. https://doi.org/10.1029/2019SW002278. [Google Scholar]
- Boteler DH, Pirjola RJ. 1998. The complex-image method for calculating the magnetic and electric fields produced at the surface of the Earth by the auroral electrojet. Geophys J Int 132(1): 31–40. https://doi.org/10.1046/j.1365-246x.1998.00388.x. [CrossRef] [Google Scholar]
- Cagniard L. 1953. Basic theory of the magnetotelluric method of geophysical prospecting. Geophysics 18: 605–635. https://doi.org/10.1190/1.1437915. [CrossRef] [Google Scholar]
- Campanya J, Gallagher PT, Blake SP, Gibbs M, Jackson D, Beggan CD, Richardson GS, Hogg C. 2019. Modeling geoelectric fields in Ireland and the UK for space weather applications. Space Weather 17(2): 216–237. https://doi.org/10.1029/2018SW001999. [CrossRef] [Google Scholar]
- Caraballo R, González-Esparza JA, Sergeeva M, Pacheco CR. 2020. First GIC estimates for the Mexican power grid. Space Weather 18(2): e2019SW002260. https://doi.org/10.1029/2019sw002260. [CrossRef] [Google Scholar]
- Case NA, Marple SR, Honary F, Wild JA, Billett DD, Grocott A. 2017. AuroraWatch UK: An automated aurora alert system. Earth and Space Science 4(12): 746–754. https://doi.org/10.1002/2017ea000328. [CrossRef] [Google Scholar]
- Chave A, Jones A. 2012. The magnetotelluric method: Theory and practice, Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/CBO9781139020138. [CrossRef] [Google Scholar]
- Dimmock AP, Rosenqvist L, Hall J-O, Viljanen A, Yordanova E, Honkonen I, André M, Sjöberg EC. 2019. The GIC and geomagnetic response over Fennoscandia to the 7–8 September 2017 geomagnetic storm. Space Weather 17: 989–1010. https://doi.org/10.1029/2018sw002132. [Google Scholar]
- Divett T, Manus DHM, Richardson GS, Beggan CD, Rodger CJ, Ingham M, Clarke E, Thomson AWP, Dalzell M, Obana Y. 2020. Geomagnetically induced current model validation From New Zealand’s South Island. Space Weather 18: e2020SW002.494. https://doi.org/10.1029/2020SW002494. [CrossRef] [Google Scholar]
- Fernberg P. 2012. One-dimensional earth resistivity models for selected areas of continental United States and Alaska. Tech. rep., EPRI, Palo Alto, CA. Technical Update 1026430. [Google Scholar]
- Freeman MP, Forsyth C, Rae IJ. 2019. The influence of substorms on extreme rates of change of the surface horizontal magnetic field in the United Kingdom. Space Weather 17(6): 827–844. https://doi.org/10.1029/2018SW002148. [CrossRef] [Google Scholar]
- Fujii I, Ookawa T, Nagamachi S, Owada T. 2015. The characteristics of geoelectric fields at Kakioka, Kanoya, and Memambetsu inferred from voltage measurements during 2000 to 2011. Earth Planets Space 67: 62, 1–17. https://doi.org/10.1186/s40623-015-0241-z. [CrossRef] [Google Scholar]
- Hapgood M. 2019. The great storm of May 1921: An exemplar of a dangerous space weather event. Space Weather 17: 950–975. https://doi.org/10.1029/2019sw002195. [CrossRef] [Google Scholar]
- Horton R, Boteler D, Overbye TJ, Pirjola R, Dugan RC. 2012. A test case for the calculation of geomagnetically induced currents. IEEE Trans Power Deliv 27(4): 2368–2373. https://doi.org/10.1109/TPWRD.2012.2206407. [CrossRef] [Google Scholar]
- Hübert J, Beggan CD, Richardson GS, Martyn T, Thomson AWP. 2020. Differential magnetometer measurements of geomagnetically induced currents in a complex high voltage network. Space Weather 18(4): e2019SW002421. https://doi.org/10.1029/2019sw002421. [Google Scholar]
- Ivannikova E, Kruglyakov M, Kuvshinov A, Rastätter L, Pulkkinen A. 2018. Regional 3-D modeling of ground electromagnetic field due to realistic geomagnetic disturbances. Space Weather 16(5): 476–500. https://doi.org/10.1002/2017sw001793. [CrossRef] [Google Scholar]
- Juusola L, Vanhamäki H, Viljanen A, Smirnov M. 2020. Induced telluric currents play a major role in the interpretation of geomagnetic variations. Ann Geophys 38: 983–998. https://doi.org/10.5194/angeo-38-983-2020. [CrossRef] [Google Scholar]
- Kelbert A. 2020. The role of global/regional Earth conductivity models in natural geomagnetic hazard mitigation. Surv Geophys 41(1): 115–166. https://doi.org/10.1007/s10712-019-09579-z. [CrossRef] [Google Scholar]
- Kelbert A, Balch CC, Pulkkinen A, Egbert GD, Love JJ, Rigler EJ, Fujii I. 2017. Methodology for time-domain estimation of storm time geoelectric fields using the 3-D magnetotelluric response tensors. Space Weather 15(7): 874–894. https://doi.org/10.1002/2017SW001594. [CrossRef] [Google Scholar]
- Kelly GS, Viljanen A, Beggan CD, Thomson AWP. 2017. Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms. Space Weather 15(1): 99–114. https://doi.org/10.1002/2016SW001469. [CrossRef] [Google Scholar]
- Kis A, Koppán A, Lemperger I, Prodán T, Szendröi J, Verö J, Wesztergo V. 2007. Long-term variation of the geoelectric activity index T. Geophys Res 398: C–99. [Google Scholar]
- Love JJ, Lucas GM, Kelbert A, Bedrosian PA. 2018. Geoelectric hazard maps for the Mid-Atlantic United States: 100 year extreme values and the 1989 magnetic storm. Geophys Res Lett 45(1): 5–14. https://doi.org/10.1002/2017GL076042. [CrossRef] [Google Scholar]
- Lucas GM, Love JJ, Kelbert A, Bedrosian PA, Rigler EJ. 2020. A 100-year geoelectric hazard analysis for the U.S. high-voltage power grid. Space Weather 18(2): e2019SW002329. https://doi.org/10.1029/2019sw002329. [CrossRef] [Google Scholar]
- Mac Manus DH, Rodger CJ, Dalzell M, Thomson AWP, Clilverd MA, Petersen T, Wolf MM, Thomson NR, Divett T. 2017. Long-term geomagnetically induced current observations in New Zealand: Earth return corrections and geomagnetic field driver. Space Weather 15(8): 1020–1038. https://doi.org/10.1002/2017SW001635. [CrossRef] [Google Scholar]
- Marshall RA, Wang L, Paskos GA, Olivares-Pulido G, Walt TVD, et al. 2019. Modeling geomagnetically induced currents in Australian power networks using different conductivity models. Space Weather 17(5): 727–756. https://doi.org/10.1029/2018sw002047. [CrossRef] [Google Scholar]
- McKay A. 2003. Geoelectric fields and geomagnetically induced currents in the United Kingdom. Ph.D. thesis, University of Edinburgh, Edinburgh, UK. http://hdl.handle.net/1842/639. [Google Scholar]
- McLay S, Beggan C. 2010. Interpolation of externally-caused magnetic fields over large sparse arrays using Spherical Elementary Current Systems. Ann Geophys 28: 1795–1805. https://doi.org/10.5194/angeo-28-1795-2010. [CrossRef] [Google Scholar]
- Myllys M, Viljanen A, Rui OA, Ohnstad TM. 2014. Geomagnetically induced currents in Norway: The northernmost high-voltage power grid in the world. J Space Weather Space Clim 4: A10. https://doi.org/10.1051/swsc/2014007. [CrossRef] [EDP Sciences] [Google Scholar]
- North-American Electric Reliability Corporation. 2016. Project 2013-03 GMD mitigation: Benchmark geomagnetic disturbance event description. Tech. rep. URL https://www.nerc.com/pa/Stand/Project201303GeomagneticDisturbanceMitigation/Benchmark_Clean_May12_complete.pdf. [Google Scholar]
- Oughton EJ, Hapgood M, Richardson GS, Beggan CD, Thomson AWP, et al. 2018. A risk assessment framework for the socioeconomic impacts of electricity transmission infrastructure failure due to space weather: An application to the United Kingdom. Risk Anal 38(12): 1–22. https://doi.org/10.1111/risa.13229. [CrossRef] [Google Scholar]
- Pokhrel S, Nguyen B, Rodriguez M, Bernabeu E, Simpson JJ. 2018. A finite difference time domain investigation of electric field enhancements along ocean-continent boundaries during space weather events. J Geophys Res Space Phys 123(6): 5033–5046. https://doi.org/10.1029/2017ja024648. [CrossRef] [Google Scholar]
- Preece WH. 1882. Earth-currents. Nature 25(639): 289–289. https://doi.org/10.1038/025289c0. [CrossRef] [Google Scholar]
- Pulkkinen A, Bernabeu E, Eichner J, Beggan C, Thomson A. 2012. Generation of 100-year geomagnetically induced current scenarios. Space Weather 10(S04): 003. https://doi.org/10.1029/2011SW000750. [CrossRef] [Google Scholar]
- Robertson K, Thiel S, Meqbel N. 2020. Quality over quantity: on workflow and model space exploration of 3D inversion of MT data. Earth Planets Space 72: 2, 1–22. https://doi.org/10.1186/s40623-019-1125-4. [CrossRef] [Google Scholar]
- Romano G, Balasco M, Lapenna V, Siniscalchi A, Telesca L, Tripaldi S. 2014. On the sensitivity of long-term magnetotelluric monitoring in Southern Italy and source-dependent robust single station transfer function variability. Geophys J Int 197(3): 1425–1441. https://doi.org/10.1093/gji/ggu083. [CrossRef] [Google Scholar]
- Rosenqvist L, Hall JO. 2019. Regional 3-D modeling and verification of geomagnetically induced currents in Sweden. Space Weather 17(1): 27–36. https://doi.org/10.1029/2018sw002084. [CrossRef] [Google Scholar]
- Schulte in den Bäumen H, Moran D, Lenzen M, Cairns I, Steenge A. 2014. How severe Space Weather can disrupt global supply chains. Nat Hazards Earth Syst Sci 2: 4463–4486. https://doi.org/10.5194/nhessd-2-4463-2014. [Google Scholar]
- Schultz A, Egbert GD, Kelbert A, Peery T, Clote V, Fry B, Erofeeva S. 2006–2018. USArray TA magnetotelluric transfer functions. Tech. rep., Staff of the National Geoelectromagnetic Facility and their Contractors. http://ds.iris.edu/spud/emtf/15050279. [Google Scholar]
- Simpson F, Bahr K. 2005. Practical magnetotellurics, Cambridge University Press, Cambridge. [CrossRef] [Google Scholar]
- Simpson F, Bahr K. 2020. Estimating the electric field response to the Halloween 2003 and September 2017 magnetic storms across Scotland using observed geomagnetic fields, magnetotelluric impedances and perturbation tensors. J Space Weather Space Clim 10: 48, 1–10. https://doi.org/10.1051/swsc/2020049. [CrossRef] [Google Scholar]
- Simpson F, Bahr K. 2021. Nowcasting and validating Earth’s electric-field response to extreme space-weather events using magnetotelluric data: Application to the September 2017 geomagnetic storm and comparison to observed and modelled fields in Scotland. Space Weather 19: e2019SW002432. https://doi.org/10.1029/2019SW002432. [CrossRef] [Google Scholar]
- Smirnov M. 2008. Magnetotelluric data processing with a robust statistical procedure having a high breakdown point. Geophys J Int 152(1): 1–7. https://doi.org/10.1046/j.1365-246X.2003.01733.x. [CrossRef] [Google Scholar]
- Sokolova EY, Kozyreva OV, Pilipenko VA, Sakharov YA, Epishkin DV. 2019. Space-weather-driven geomagnetic- and telluric-field variability in Northwestern Russia in correlation with geoelectrical structure and currents induced in electric-power grids. Izv Atmos Ocean Phys 55(11): 1639–1658. https://doi.org/10.1134/s000143381911015x. [CrossRef] [Google Scholar]
- Sun R, Balch C. 2019. Comparison between 1-D and 3-D geoelectric field methods to calculate geomagnetically induced currents: A case study. IEEE Trans Power Deliv 34(6): 2163–2172. https://doi.org/10.1109/tpwrd.2019.2905532. [CrossRef] [Google Scholar]
- Thébault E, Finlay CC, Beggan CD, Alken P, Aubert J, et al. 2015. International Geomagnetic Reference Field: The 12th generation. Earth Planets Space 67: 79, 1–19. https://doi.org/10.1186/s40623-015-0228-9. [CrossRef] [Google Scholar]
- Thomson AWP, McKay AJ, Clarke E, Reay SJ. 2005. Surface electric fields and geomagnetically induced currents in the Scottish power grid during the 30 October 2003 geomagnetic storm. Space Weather 3(S11): 002. https://doi.org/10.1029/2005SW000156. [Google Scholar]
- Torta JM, Marsal S, Quintana M. 2014. Assessing the hazard from geomagnetically induced currents to the entire high-voltage power network in Spain. Earth Planets Space 66: 87, 1–17. https://doi.org/10.1186/1880-5981-66-87. [CrossRef] [Google Scholar]
- Vasseur G, Weidelt P. 1977. Bimodal electromagnetic induction in non-uniform thin sheets with an application to the northern Pyrenean induction anomaly. Geophys J Int 51: 669–690. https://doi.org/10.1111/j.1365-246X.1977.tb04213.x. [CrossRef] [Google Scholar]
- Viljanen A, Pirjola R. 2017. Influence of spatial variations of the geoelectric field on geomagnetically induced currents. J Space Weather Space Clim 7: A22. https://doi.org/10.1051/swsc/2017024. [CrossRef] [Google Scholar]
- Viljanen A, Pirjola R, Amm O. 1999. Magnetotelluric source effect due to 3D ionospheric current systems using the complex image method for 1D conductivity structures. Earth Planets Space 51: 933–945. https://doi.org/10.1186/BF03351564. [CrossRef] [Google Scholar]
- Wait J. 1982. Geo-electromagnetism. Elsevier. ISBN 9780127308807. [Google Scholar]
- Wu C-C, Liou K, Lepping RP, Hutting L, Plunkett S, Howard RA, Socker D. 2016. The first super geomagnetic storm of solar cycle 24: “The St. Patrick’s day event (17 March 2015)”. Earth Planets Space 68: 151, 1–12. https://doi.org/10.1186/s40623-016-0525-y. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.