Open Access
Issue |
J. Space Weather Space Clim.
Volume 11, 2021
Topical Issue - Space Weather Instrumentation
|
|
---|---|---|
Article Number | 18 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/swsc/2020080 | |
Published online | 18 February 2021 |
- Altadill D, Segarra A, Blanch E, Juan JM, Paznukhov VV, Buresova D, Galkin I, Reinisch BW, Belehaki A. 2020. A method for real-time identification and tracking of traveling ionospheric disturbances using ionosonde data: First results. J Space Weather Space Clim 10: 2. https://doi.org/10.1051/swsc/2019042. [CrossRef] [Google Scholar]
- Arras C, Wickert J, Beyerle G, Heise S, Schmidt T, Jacobi C. 2008. A global climatology of ionospheric irregularities derived from GPS radio occultation. Geophys Res Lett 35(14): 2–5. https://doi.org/10.1029/2008GL034158. [CrossRef] [Google Scholar]
- Belehaki A, Jakowski N, Reinisch BW. 2003. Comparison of ionospheric ionization measurements over Athens using ground ionosonde and GPS-derived TEC values. Radio Sci 38(6): 1–11. https://doi.org/10.1029/2003rs002868. [CrossRef] [Google Scholar]
- Chen CF, Reinisch BW, Scali JL, Huang X, Gamache RR, Buonsanto MJ, Ward BD. 1994. The accuracy of ionogram-derived N(h) profiles. Adv Space Res 14(12): 43–46. https://doi.org/10.1016/0273-1177(94)90236-4. [CrossRef] [Google Scholar]
- Cherniak IV, Zakharenkova IE, Krankowski A, Shagimuratov II. 2012. Plasmaspheric electron content derived from GPS TEC and FORMOSAT-3/COSMIC measurements: Solar minimum condition. Adv Space Res 50(4): 427–440. https://doi.org/10.1016/j.asr.2012.04.002. [CrossRef] [Google Scholar]
- Cherniak IV, Zakharenkova IE. 2014. Validation of FORMOSAT-3/COSMIC radio occultation electron density profiles by incoherent scatter radar data. Adv Space Res 53(9): 1304–1312. https://doi.org/10.1016/j.asr.2014.02.010. [CrossRef] [Google Scholar]
- Cherniak I, Zakharenkova I. 2019. Evaluation of the IRI-2016 and NeQuick electron content specification by COSMIC GPS radio occultation, ground-based GPS and Jason-2 joint altimeter/GPS observations. Adv Space Res 63(6): 1845–1859. https://doi.org/10.1016/j.asr.2018.10.036. [CrossRef] [Google Scholar]
- Dandenault PB, Dao E, Kaeppler SR, Miller ES. 2020. An estimation of human-error contributions to historical ionospheric data. Earth Space Sci 7: e2020EA001123. https://doi.org/10.1029/2020EA001123. [CrossRef] [Google Scholar]
- DPS4D Specification. 2020. Digisonde-4D system manual, version 1.2.6. https://digisonde.com/pdf/Digisonde4DManual_LDI-web1-2-6.pdf. As accessed on December 2020. [Google Scholar]
- Dymond KF, Coker C, Metzler C, McDonald SE. 2017. Evaluation of the performance of ionospheric models at solar maximum using COSMIC slant TEC measurements. Radio Sci 52(3): 378–388. https://doi.org/10.1002/2015RS005908. [CrossRef] [Google Scholar]
- Garcia-Fernandez M, Hernandez-Pajares M, Juan JM, Sanz J. 2005. Performance of the improved Abel transform to estimate electron density profiles from GPS occultation data. GPS Solut 9(2): 105–110. https://doi.org/10.1007/s10291-005-0139-5. [CrossRef] [Google Scholar]
- Hajj GA, Romans LJ. 1998. Ionospheric electron density profiles obtained with the Global Positioning System: Results from the GPS/MET experiment. Radio Sci 33(1): 175–190. https://doi.org/10.1029/97RS03183. [CrossRef] [Google Scholar]
- Habarulema JB, Katamzi ZT, Yizengaw E. 2014. A simultaneous study of ionospheric parameters derived from FORMOSAT-3/COSMIC, GRACE, and CHAMP missions over middle, low, and equatorial latitudes: Comparison with ionosonde data. J Geophys Res: Space Phys 119(9): 7732–7744. https://doi.org/10.1002/2014JA020192. [CrossRef] [Google Scholar]
- He M, Liu L, Wan W, Ning B, Zhao B, Wen J, Yue XA, Le H. 2009. A study of the Weddell Sea Anomaly observed by FORMOSAT-3/COSMIC. J Geophys Res: Space Phys 114(12): A12309. https://doi.org/10.1029/2009JA014175. [Google Scholar]
- Jakowski N, Wehrenpfennig A, Heise S, Reigber C, Lühr H, Grunwaldt L, Meehan TK. 2002. GPS radio occultation measurements of the ionosphere from CHAMP: Early results. Geophys Res Lett 29(10): 1457. https://doi.org/10.1029/2001gl014364. [CrossRef] [Google Scholar]
- Jakowski N, Tsybulya K, Mielich J, Belehaki A, Altadill D, Jean-Claude Jodogne J-C, Zolesi B. 2005. Validation of GPS ionospheric radio occultation results onboard CHAMP by vertical sounding observations in Europe. In: Earth observation with CHAMP, Reigber C, Lühr H, Schwintzer P, Wickert J (Eds.), Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26800-6_70. [Google Scholar]
- Kashcheyev A, Nava B. 2019. Validation of NeQuick 2 model topside ionosphere and plasmasphere electron content using COSMIC POD TEC. J Geophys Res: Space Phys 124: 9525–9536. https://doi.org/10.1029/2019JA026971. [CrossRef] [Google Scholar]
- Kelley MC, Wong VK, Aponte N, Coker C, Mannucci AJ, Komjathy A. 2009. Comparison of COSMIC occultation-based electron density profiles and TIP observations with Arecibo incoherent scatter radar data. Radio Sci 44: RS4011. https://doi.org/10.1029/2008rs004087. [CrossRef] [Google Scholar]
- Klimenko MV, Klimenko VV, Zakharenkova IE, Cherniak IV. 2015. The global morphology of the plasmaspheric electron content during Northern winter 2009 based on GPS/COSMIC observation and GSM TIP model results. Adv Space Res 55(8): 2077–2085. https://doi.org/10.1016/j.asr.2014.06.027. [CrossRef] [Google Scholar]
- Klobuchar JA, Kunches JM. 2000. Eye on the ionosphere: The spatial variability of ionospheric range delay. GPS Solut 3(3): 70–74. https://doi.org/10.1007/PL00012808. [CrossRef] [Google Scholar]
- Krankowski A, Zakharenkova I, Krypiak-Gregorczyk A, Shagimuratov II, Wielgosz P. 2011. Ionospheric electron density observed by FORMOSAT-3/COSMIC over the European region and validated by ionosonde data. J Geodesy 85(12): 949–964. https://doi.org/10.1007/s00190-011-0481-z. [CrossRef] [Google Scholar]
- Komjathy A, Wilson B, Pi X, Akopian V, Dumett M, Iijima B, Verkhoglyadova O, Mannucci AJ. 2010. JPL/USC GAIM: On the impact of using COSMIC and ground-based GPS measurements to estimate ionospheric parameters. J Geophys Res: Space Phys 115(2): A02307. https://doi.org/10.1029/2009JA014420. [CrossRef] [Google Scholar]
- Lee IT, Wang W, Liu JY, Chen CY, Lin CH. 2011. The ionospheric midlatitude trough observed by FORMOSAT-3/COSMIC during solar minimum. J Geophys Res: Space Phys 116(6): 1–11. https://doi.org/10.1029/2010JA015544. [Google Scholar]
- Lei J, Syndergaard S, Burns AG, Solomon SC, Wang W, et al. 2007. Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: Preliminary results. J Geophys Res: Space Phys 112(7): 1–10. https://doi.org/10.1029/2006JA012240. [Google Scholar]
- McNamara LF, Thompson DC. 2015. Validation of COSMIC values of foF2 and M(3000)F2 using ground-based ionosondes. Adv Space Res 55(1): 163–169. https://doi.org/10.1016/j.asr.2014.07.015. [CrossRef] [Google Scholar]
- Pedatella NM, Larson KM. 2010. Routine determination of the plasmapause based on COSMIC GPS total electron content observations of the midlatitude trough. J Geophys Res: Space Phys 115(9). https://doi.org/10.1029/2010JA015265. [Google Scholar]
- Pedatella NM, Forbes JM, Maute A, Richmond AD, Fang T, Larson KM. 2011. Longitudinal variations in the F region ionosphere and the topside ionosphere-plasmasphere : Observations and model simulations. J Geophys Res 116: A12309. https://doi.org/10.1029/2011JA016600. [CrossRef] [Google Scholar]
- Pedatella NM, Yue X, Schreiner WS. 2015. An improved inversion for FORMOSAT-3/COSMIC ionosphere electron density profiles. J Geophys Res: Space Phys 120: 8942–8953. https://doi.org/10.1002/2015JA021704. [CrossRef] [Google Scholar]
- Piggott W.R., Rawer K. 1978. URSI handbook of ionogram interpretation and reduction. World data. Center A, Report UAG-23 A. [Google Scholar]
- Rush CM, Edwards WR. 1976. An automated mapping technique for representing the hourly behavior of the ionosphere. Radio Sci 11(11): 931–937. https://doi.org/10.1029/RS011i011p00931. [CrossRef] [Google Scholar]
- Reinisch BW, Huang X. 2001. Deducing topside profiles and total electron content from bottomside ionograms. Adv Space Res 27(1): 23–30. https://doi.org/10.1016/S0273-1177(00)00136-8. [CrossRef] [Google Scholar]
- Reinisch BW, Galkin IA, Khmyrov GM, Kozlov AV, Bibl K, et al. 2009. New Digisonde for research and monitoring applications. Radio Sci 44: RS0A24. https://doi.org/10.1029/2008rs004115. [CrossRef] [Google Scholar]
- Reinisch BW, Galkin IA. 2011. Global ionospheric radio observatory (GIRO). Earth Planets Space 63: 377–381. https://doi.org/10.5047/eps.2011.03.001. [CrossRef] [Google Scholar]
- Reinisch B, Galkin I, Belehaki A, Paznukhov V, Huang X, et al. 2018. Pilot ionosonde network for identification of traveling ionospheric disturbances. Radio Sci 53(3): 365–378. https://doi.org/10.1002/2017RS006263. [CrossRef] [Google Scholar]
- Sadighi S, Jayachandran PT, Jakowski N, MacDougall JW. 2009. Comparison of the CHAMP radio occultation data with the Canadian advanced digital ionosonde in the Polar Regions. Adv Space Res 44(11): 1304–1308. https://doi.org/10.1016/j.asr.2009.07.016. [CrossRef] [Google Scholar]
- Schreiner WS, Sokolovskiy SV, Rocken C, Hunt DC. 1999. Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Sci 34(4): 949–966. https://doi.org/10.1029/1999RS900034. [CrossRef] [Google Scholar]
- Schreiner WS, Weiss JP, Anthes RA, Braun J, Chu V, et al. 2020. COSMIC-2 radio occultation constellation: First results. Geophys Res Lett 47: e2019GL086841. https://doi.org/10.1029/2019GL086841. [CrossRef] [Google Scholar]
- Syndergaard S, Schreiner WS, Rocken C, Hunt DC, Dymond KF. 2006. Preparing for COSMIC: Inversion and analysis of ionospheric data products. In: Atmosphere and climate: Studies by occultation methods, Foelsche U, Kirchengast G, Steiner AK (Eds.), Springer, New York, pp. 137–146. [Google Scholar]
- Tien JY, Okihiro BB, Esterhuizen SX, Franklin GW, Meehan TK, Munson TN, Robison DE, Turbiner D, Young LE. 2012. Next generation scalable spaceborne GNSS science receiver. In: Proceedings of the 2012 International Technical Meeting of The Institute of Navigation, Newport Beach, CA, January 2012, pp. 882–914. [Google Scholar]
- Tsai LC, Tsai WH, Schreiner WS, Berkey FT, Liu JY. 2001. Comparisons of GPS/MET retrieved ionospheric electron density and ground based ionosonde data. Earth Planets Space 53: 193–205. [CrossRef] [Google Scholar]
- Yue X, Schreiner WS, Lei J, Sokolovskiy SV, Rocken C, Hunt DC, Kuo YH. 2010. Error analysis of Abel retrieved electron density profiles from radio occultation measurements. Ann Geophys 28(1): 217–222. https://doi.org/10.5194/angeo-28-217-2010. [CrossRef] [Google Scholar]
- Yue X, Schreiner WS, Rocken C, Kuo YH. 2013. Validate the IRI2007 model by the COSMIC slant TEC data during the extremely solar minimum of 2008. Adv Space Res 51(4): 647–653. https://doi.org/10.1016/j.asr.2011.08.011. [CrossRef] [Google Scholar]
- Zakharenkova I, Cherniak I, Shagimuratov I. 2017. Observations of the Weddell Sea Anomaly in the ground-based and space-borne TEC measurements. J Atmos Sol-Terr Phys 161: 105–117. https://doi.org/10.1016/j.jastp.2017.06.014. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.