Issue |
J. Space Weather Space Clim.
Volume 11, 2021
Topical Issue - Space Weather Instrumentation
|
|
---|---|---|
Article Number | 31 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/swsc/2021005 | |
Published online | 28 April 2021 |
- Abunin A, Abunina M, Belov A, Chertok I. 2020. Peculiar solar sources and geospace disturbances on 20–26 August 2018. Sol Phys 295: 7–25. https://doi.org/10.1007/s11207-019-1574-8. [CrossRef] [Google Scholar]
- Asvestari E, Gil A, Kovaltsov G, Usoskin IG. 2017. Neutron monitors and cosmogenic isotopes as cosmic ray energy integration detectors: effective yield functions, effective energy, and its dependence on the local interstellar spectrum. J Geophys Res Space Phys 122: 9790–9802. https://doi.org/10.1002/2017JA024469. [NASA ADS] [CrossRef] [Google Scholar]
- Bieber J, Evenson P, Dröge W, Pyle R. 2004. Spaceship Earth observations of the Easter 2001 solar particle event. Astrophys J 601: L103–L106. https://doi.org/10.1086/381801. [NASA ADS] [CrossRef] [Google Scholar]
- Chen C, Liu YD, Wang R, Zhao X, Hu H, Zhu B. 2019. Characteristics of a gradual filament eruption and subsequent CME propagation in relation to a strong geomagnetic storm. Astrophys J 884: 90. https://doi.org/10.3847/15384357/ab3f36. [CrossRef] [Google Scholar]
- Clem J, Dorman L. 2000. Neutron monitor response functions. Space Sci Rev 93: 335–359. https://doi.org/10.1007/978-94-017-1187-6_16. [NASA ADS] [CrossRef] [Google Scholar]
- Dorman L. 2004. Cosmic rays in the Earth’s atmosphere and underground. Springer, Netherlands, Dordrecht. ISBN 978-1-4020-2113-8. [CrossRef] [Google Scholar]
- Dorman L. 2009. Cosmic rays in magnetospheres of the Earth and other Planets. Springer, Netherlands, Dordrecht. ISBN 978-90-481-8096-7. [Google Scholar]
- Gil A, Kovaltsov GA, Mikhailov VV. 2018. An anisotropic cosmic-ray enhancement event on 07-June-2015. Sol Phys 293: 154–163. https://doi.org/10.1007/s11207-018-1375-5. [CrossRef] [Google Scholar]
- Kataoka R, Sato T, Kubo Y, Shiota D, Kuwabara T, Yashiro S, Yasuda H. 2014. Radiation dose forecast of WASAVIES during ground level enhancement. Space Weather 12: 380–386. https://doi.og/10.1002/2014SW001053. [CrossRef] [Google Scholar]
- Kataoka R, Sato T, Miyake S, Shiota D, Kubo Y. 2018. Radiation dose nowcast for the ground level enhancement on 10–11 September 2017. Space Weather 16: 917–923. https://doi.og/10.1029/2018SW001874. [CrossRef] [Google Scholar]
- Kihara W, Munakata K, Kato C, Kataoka R, Kadokura A, et al. 2021. A peculiar ICME event in August 2018 observed with the Global Muon Detector Network. Space Weather 19: 1–14. https://doi.org/10.1029/2020SW002531. [CrossRef] [Google Scholar]
- Kitamura T, Kodama M. 1961. Time variation of cosmic ray intensity in the Antarctic region. J Geomagn Geoelectric 12: 175–180. https://doi.org/10.5636/jgg.12.175. [CrossRef] [Google Scholar]
- Kuwabara T, Bieber J, Clem J, Evenson P, Pyle R, et al. 2006. Real-time cosmic ray monitoring system for space weather. Space Weather 4: S08,001. https://doi.org/10.1029/2005SW000204. [Google Scholar]
- Kuwabara T, Bieber JW, Evenson P, Munakata K, Yasue S, et al. 2009. Determination of interplanetary coronal mass ejection geometry and orientation from ground based observations of galactic cosmic rays. J Geophys Res 114: A05,109. https://doi.org/10.1029/2008JA013717. [NASA ADS] [CrossRef] [Google Scholar]
- Mangeard P, Ruffolo D, Siz A, Madlee S, Nutaro T. 2016. Monte Carlo simulation of the neutron monitor yield function. J Geophys Res Space Phys 121: 7435–7448. https://doi.org/10.1002/2016JA022638. [CrossRef] [Google Scholar]
- Mendoça R, Braga C, Echer E, Dal Lago A, Munakata K, et al. 2016. The temperature effect in secondary cosmic rays (MUONS) observed at the ground: analysis of the global muon detector network data. Astrophys J 830(2): 88–112. https://doi.org/10.3847/0004-637X/830/2/88. [CrossRef] [Google Scholar]
- Mishev A, Koldobskiy S, Kovaltsov G, Gil A, Usoskin I. 2020. Updated neutron monitor yield function: bridging between in situ and ground based cosmic ray measurements. J Geophys Res Space Phys 125: 1–11. https://doi.org/10.1029/2019JA027433. [Google Scholar]
- Miyake S, Kataoka R, Sato T. 2017. Cosmic ray modulation and radiation dose of aircrews during the solar cycle 24/25. Space Weather 15: 589–605. https://doi.org/10.1002/2016SW001588. [CrossRef] [Google Scholar]
- Moraal H, Belov A, Clem J. 2000. Design and co-ordination of Multi-Station International Neutron Monitor Networks. Space Sci Rev 93: 285–303. https://doi.org/10.1023/A:1026504814360. [CrossRef] [Google Scholar]
- Murakami K, Nagashima K, Sagisaka S, Mishima Y, Inoue A. 1979. Response functions for cosmic-ray muons at various depths underground. IL Nuovo Cimento C 2: 635–651. https://doi.org/10.1007/BF02557762. [Google Scholar]
- Nagashima K, Sakakibara S, Murakami K. 1989. Response and yield functions of neutron monitor, galactic cosmic-ray spectrum and its solar modulation, derived from all the available world-wide surveys. IL Nuovo Cimento C 12: 173–209. https://doi.org/10.1007/BF02523790. [Google Scholar]
- Picone J, Hedin AE, Drob DP, Aikin A. 2002. NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res 107: 1468–1483. https://doi.org/10.1029/2002JA009430. [Google Scholar]
- Sato T, Iwamoto Y, Hashimoto S, Ogawa T, Furuta T, et al. 2018a. Features of particle and heavy ion transport code system (PHITS) version 3.02. J Nucl Sci Technol 55: 684–690. https://doi.org/10.1080/00223131.2017.1419890. [Google Scholar]
- Sato T, Kataoka R, Shiota D, Kubo Y, Ishii M, Yasuda H, Miyake S, Park I, Miyoshi Y. 2018b. Real-time and automatic analysis program for WASAVIES: Warning system of aviation exposure to solar energetic particles. Space Weather 16: 924–936. https://doi.org/10.1029/2018SW001873. [CrossRef] [Google Scholar]
- Simpson JA. 2000. The cosmic ray nucleonic component: the invention and scientific uses of the neutron monitor. In: Vol. 10 of Cosmic Rays and Earth. Space Sciences Series of ISSI, Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1187-6_2. [Google Scholar]
- Smith CW, McCracken KG, Schwadron NA, Goelzer ML. 2014. The heliospheric magnetic flux, solar wind proton flux, and cosmic ray intensity during the coming solar minimum. Space Weather 12: 499–507. https://doi.org/10.1002/2014SW001067. [Google Scholar]
- Usoskin I, Koldobskiy S, Kovaltsov G, Gil A, Usoskina I, Willamo T, Ibragimov A. 2020. Revised GLE database: fluences of solar energetic particles as measured by the neutron-monitor network since 1956. A&A 640: 1–18. https://doi.org/10.1051/0004-6361/202038272. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.