Open Access
Issue |
J. Space Weather Space Clim.
Volume 11, 2021
|
|
---|---|---|
Article Number | 15 | |
Number of page(s) | 27 | |
DOI | https://doi.org/10.1051/swsc/2020077 | |
Published online | 17 February 2021 |
- Ahn BH, Moon G-H. 2003. Seasonal and universal time variations of the AU, AL and Dst indices. J Kor Ast Soc 36: S93–S99. [CrossRef] [Google Scholar]
- Ahn BH, Kroehl HW, Kamide Y, Kihn E. 2000. Universal time variations of the auroral electrojet indices. J Geophys Res 105: 267–275. https://doi.org/10.1029/1999JA900364. [CrossRef] [Google Scholar]
- Allen JH, Kroehl HW. 1975. Spatial and Temporal Distributions of Magnetic Effects of auroral electrojets as derived from AE indices. J Geophys Res 80: 3667–3677. https://doi.org/10.1029/JA080i025p03667. [CrossRef] [Google Scholar]
- Aoki T. 1977. Influence of the dipole tilt angle on the development of auroral electrojets. J Geomag Geoelec 29(5): 441–453. https://doi.org/10.5636/jgg.29.441. [CrossRef] [Google Scholar]
- Baker KB, Wing S. 1989. A new magnetic coordinate system for conjugate studies at high-latitudes. J Geophys Res 94: 9139–9143. https://doi.org/10.1029/ja094ia07p09139. [CrossRef] [Google Scholar]
- Bartels J. 1925. Eine universelle Tagesperiode der erdmagnetischen Aktivität. Meteorol Z 42: 147–152. [Google Scholar]
- Bartels J. 1928. Periodische Variationen. Aktivität (Chapter, “Das Magnetfeld der Erde”,). In: Handbuch der Experimentalphysik. Angeneeister G, Bartels J (Eds.), Akademische Verlagsgesellschaft, Leipzig, Vol 25, pp. 624–665. [Google Scholar]
- Basu S. 1975. Universal time seasonal variations of auroral zone magnetic activity and VHF scintillations. J Geophys Res 80: 4725–4728. https://doi.org/10.1029/ja080i034p04725. [CrossRef] [Google Scholar]
- Berkey FT. 1973. Comparison of latitudinal variation of auroral absorption at different longitudes. J Atmos Terr Phys 35(10): 1881–1887. https://doi.org/10.1016/0021-9169(73)90061-5. [CrossRef] [Google Scholar]
- Berthelier A. 1976. Influence of the polarity of the interplanetary magnetic field on the annual and the diurnal variations of magnetic activity. J Geophys Res 81(25): 4546–4552. https://doi.org/10.1029/ja081i025p04546. [CrossRef] [Google Scholar]
- Berthelier A. 1990. Comment on “The universal time variation of magnetic activity”. Geophys Res Lett 17(3): 307–330. https://doi.org/10.1029/GL017i003p00307. [CrossRef] [Google Scholar]
- Boller BR, Stolov HL. 1970. Kelvin-Helmholtz instability and the semiannual variation of geomagnetic activity. J Geophys Res 75(31): 6073–6084. https://doi.org/10.1029/JA075i031p06073. [CrossRef] [Google Scholar]
- Caan MN, McPherron RL, Russell CT. 1973. Solar wind and substorm-related changes in the lobes of the geomagnetic tail. J Geophys Res 78(34): 8087–8096. https://doi.org/10.1029/ja078i034p08087. [CrossRef] [Google Scholar]
- Chambodut A, Marchaudon A, Menvielle M, El-Lemdani F, Lathuillere C. 2013. The K-derived MLT sector geomagnetic indices. Geophys Res Lett 40: 4808–4812. https://doi.org/10.1002/grl.50947. [CrossRef] [Google Scholar]
- Chapman S, Bartels J. 1940. Geomagnetism volume 1: Geomagnetic and related phenomena. (Section X1. 20, p. 391). The International Series of Monographs on Physics. 6. Oxford University Press, London. [Google Scholar]
- Cliver EW, Kamide Y, Ling AG. 2000. Mountains versus valleys: Semiannual variation of geomagnetic activity. J Geophys Res 105: 2413–2424. doi:10.1029/1999JA900439. [NASA ADS] [CrossRef] [Google Scholar]
- Cowley SWH, Lockwood M. 1992. Excitation and decay of solar-wind driven flows in the magnetosphere-ionosphere system. Annales Geophys 10: 103–115. http://www.personal.reading.ac.uk/~ym901336/pdfs/92_CowleyandLockwood_1992.pdf [Google Scholar]
- Cowley SWH, Morelli JP, Lockwood M. 1991. Dependence of convective flows and particle precipitation in the high-latitude dayside ionosphere on the X and Y components of the interplanetary magnetic field. J Geophys Res 96: 5557–5564. https://doi.org/10.1029/90JA02063. [CrossRef] [Google Scholar]
- Crooker NU, Cliver EW, Tsurutani BT. 1992. The semiannual variation of great geomagnetic storms and the postshock Russell-McPherron effect preceding coronal mass ejecta. Geophys Res Lett 19(5): 429–432. https://doi.org/10.1029/92GL00377. [CrossRef] [Google Scholar]
- de La Sayette P, Berthelier A. 1996. The am annual-diurnal variations 1959–1988: A 30-year evaluation. J Geophys Res 101(A5): 10653–10663. https://doi.org/10.1029/96JA00165. [CrossRef] [Google Scholar]
- Davis TN, Sugiura M. 1966. Auroral electrojet activity index AE and its universal time variations. J Geophys Res 71(3): 785–801. https://doi.org/10.1029/JZ071i003p00785. [CrossRef] [Google Scholar]
- Deng W, Killeen TL, Burns AG, Roble RG, Slavin JA, Wharton LA. 1993. The effects of neutral inertia on ionospheric currents in the high-latitude thermosphere following a geomagnetic storm. J Geophys Res 98: 7775–7790. https://doi.org/10.1029/92JA02268. [CrossRef] [Google Scholar]
- Finch ID, Lockwood M. 2007. Solar wind-magnetosphere coupling functions on timescales of 1 day to 1 year. Ann Geophys 25: 495–506. https://doi.org/10.5194/angeo-25-495-2007. [CrossRef] [Google Scholar]
- Finch ID, Lockwood M, Rouillard AP. 2008. The effects of solar wind magnetosphere coupling recorded at different geomagnetic latitudes: separation of directly-driven and storage/release systems. Geophys Res Lett 35: L21105. https://doi.org/10.1029/2008GL035399. [CrossRef] [Google Scholar]
- Fraser-Smith AC. 1987. Centered and eccentric geomagnetic dipoles and their poles, 1600–1985. Rev Geophys 25(1): 1–16. https://doi.org/10.1029/rg025i001p00001. [NASA ADS] [CrossRef] [Google Scholar]
- Gasda S, Richmond AD. 1998. Longitudinal and interhemispheric variations of auroral ionospheric electrodynamics in a realistic geomagnetic field. J Geophys Res103 (A3): 4011–4021. https://doi.org/10.1029/97JA03243. [CrossRef] [Google Scholar]
- Hajkowicz LA. 1992. Universal time effect in the occurrence of large-scale ionospheric disturbances. Planet Space Sci 40: 1093–1099. https://doi.org/10.1016/0032-0633(92)90038-p. [CrossRef] [Google Scholar]
- Hajkowicz LA. 1998. Longitudinal (UT) effect in the onset of auroral disturbances over two solar cycles as deduced from the AE-index. Ann Geophys 16(12): 1573–1579. https://doi.org/10.1007/s00585-998-1573-9. [CrossRef] [Google Scholar]
- Hapgood MA. 1992. Space physics coordinate transformations: A user guide. Planet Space Sci 40(5): 711–717. https://doi.org/10.1016/0032-0633(92)90012-d. [NASA ADS] [CrossRef] [Google Scholar]
- Ieda A, Oyama S, Vanhamäki H, Fujii R, Nakamizo A, et al. 2014. Approximate forms of daytime ionospheric conductance. J Geophys Res Space Physics 119(12): 10397–10415. https://doi.org/10.1002/2014JA020665. [CrossRef] [Google Scholar]
- Kabin K, Rankin R, Rostoker G, Marchand R, Rae IJ, Ridley AJ, Gombosi TI, Clauer CR, DeZeeuw DL. 2004. Open-closed field line boundary position: A parametric study using an MHD model. J Geophys Res 109: A05222. https://doi.org/10.1029/2003JA010168. [Google Scholar]
- Karlsson SBP, Opgenoorth HJ, Eglitis P, Kauristie K, Syrjäsuo M, Pulkkinen TI, Lockwood M, Nakamura R, Reeves G, Romanov S. 2000. Solar wind control of magnetospheric energy content: substorm quenching and multiple onsets. J Geophys Res 105: 5335–5356. https://doi.org/10.1029/1999JA900297. [CrossRef] [Google Scholar]
- Koochak Z, Fraser-Smith AC. 2017. An update on the centered and eccentric geomagnetic dipoles and their poles for the years 1980–2015. Earth Space Sci 4: 626–636. https://doi.org/10.1002/2017EA000280. [CrossRef] [Google Scholar]
- Laundal KM, Østgaard N. 2009. Asymmetric auroral intensities in the Earth’s Northern and Southern hemispheres. Nature 460: 491–493. https://doi.org/10.1038/nature08154. [CrossRef] [Google Scholar]
- Laundal KM, Østgaard N, Snekvik K, Frey HU. 2010. Interhemispheric observations of emerging polar cap asymmetries. J Geophys Res 115: A07230. https://doi.org/10.1029/2009JA015160. [Google Scholar]
- Lin RL, Zhang XX, Liu SQ, Wang YL, Gong JC. 2010. A three-dimensional asymmetric magnetopause model. J Geophys Res 115: A04207. https://doi.org/10.1029/2009JA014235. [Google Scholar]
- Liou K, Sotirelis T, Mitchell EJ. 2018. North-south asymmetry in the geographic location of auroral substorms correlated with ionospheric effects. Sci Rep 8(1): 17230. https://doi.org/10.1038/s41598-018-35091-2. [CrossRef] [Google Scholar]
- Lockwood M. 2013. Reconstruction and Prediction of Variations in the Open Solar Magnetic Flux and Interplanetary Conditions. Living Rev Sol Phys 10: 4. https://doi.org/10.12942/lrsp-2013-4. [CrossRef] [Google Scholar]
- Lockwood M. 2019. Does adding solar wind Poynting flux improve the optimum solar wind – magnetosphere coupling function? J Geophys Res Space Phys 124(7): 5498–5515. https://doi.org/10.1029/2019JA026639. [CrossRef] [Google Scholar]
- Lockwood M, Cowley SWH. 1992. Ionospheric convection and the substorm cycle. In: Substorms 1, Proceedings of the First International Conference on Substorms, ICS-1. Mattock C (Ed.), ESA-SP-335: 99-109. European Space Agency Publications, Nordvijk, The Netherlands. [Google Scholar]
- Lockwood M, Morley SE. 2004. A numerical model of the ionospheric signatures of time-varying magnetic reconnection: I. Ionospheric convection. Ann Geophys 22: 73–91. https://doi.org/10.5194/angeo-22-73-2004. [CrossRef] [Google Scholar]
- Lockwood M, Cowley SWH, Freeman MP. 1990. The excitation of plasma convection in the high latitude ionosphere. J Geophys Res 95: 7961–7971. https://doi.org/10.1029/JA095iA06p07961. [CrossRef] [Google Scholar]
- Lockwood M, Hairston MR, Finch ID, Rouillard AP. 2009. Transpolar voltage and polar cap flux during the substorm cycle and steady convection events. J Geophys Res 114: A01210. https://doi.org/10.1029/2008JA013697. [Google Scholar]
- Lockwood M, Owens MJ, Barnard LA, Bentley S, Scott CJ, Watt CE. 2016. On the origins and timescales of geoeffective IMF. Space Weather 14: 406–432. https://doi.org/10.1002/2016SW001375. [CrossRef] [Google Scholar]
- Lockwood M, Chambodut A, Barnard LA, Owens MJ, Clarke E, et al. 2018a. A homogeneous aa index: 1. Secular variation. J Space Weather Space Clim 8: A53. https://doi.org/10.1051/swsc/2018038. [CrossRef] [Google Scholar]
- Lockwood M, Finch ID, Chambodut A, Barnard LA, Owens MJ, Clarke E. 2018b. A homogeneous aa index: 2. Hemispheric asymmetries and the equinoctial variation. J Space Weather Space Clim 8: A58. https://doi.org/10.1051/swsc/2018044. [CrossRef] [Google Scholar]
- Lockwood M, Chambodut A, Finch ID, Barnard LA, Owens MJ, Haines C. 2019a. Time-of-day/time-of-year response functions of planetary geomagnetic indices. J Space Weather Space Clim 9: A20. https://doi.org/10.1051/swsc/2019017. [CrossRef] [Google Scholar]
- Lockwood M, Bentley S, Owens MJ, Barnard LA, Scott CJ, Watt CE, Allanson O. 2019b. The development of a space climatology: 1. Solar-wind magnetosphere coupling as a function of timescale and the effect of data gaps. Space Weather 17: 133–156. https://doi.org/10.1029/2018SW001856. [CrossRef] [Google Scholar]
- Lockwood M, Owens MJ, Barnard LA, Haines C, Scott CJ, McWilliams KA, Coxon JC. 2020a. Semi-annual, annual and Universal Time variations in the magnetosphere and in geomagnetic activity: 1. Geomagnetic data. J Space Weather Space Clim 10: 23. https://doi.org/10.1051/swsc/2020023. [CrossRef] [Google Scholar]
- Lockwood M, McWilliams KA, Owens MJ, Barnard LA, Watt CE, Scott CJ, McNeill A, Coxon JC. 2020b. Semi-annual, annual and Universal Time variations in the magnetosphere and in geomagnetic activity: 2. Response to solar wind power input and relationships with solar wind dynamic pressure and magnetospheric flux transport. J Space Weather Space Clim 10: 30. https://doi.org/10.1051/swsc/2020033. [CrossRef] [Google Scholar]
- Lockwood M, Owens MJ, Barnard LA, Watt CE, Scott CJ, Coxon JC, McWilliams KA. 2020c. Semi-annual, annual and Universal Time variations in the magnetosphere and in geomagnetic activity: 3. Modelling. J Space Weather Space Clim 10: 61. https://doi.org/10.1051/swsc/2020062. [CrossRef] [Google Scholar]
- Luan X, Wang W, Burns A, Solomon S, Zhang Y, Paxton LJ, Xu J. 2011. Longitudinal variations of nighttime electron auroral precipitation in both the Northern and Southern hemispheres from the TIMED global ultraviolet imager. J Geophys Res 116: A03302. https://doi.org/10.1029/2010JA016051. [Google Scholar]
- Luan X, Wang W, Burns A, Dou X. 2016. Universal time variations of the auroral hemispheric power and their interhemispheric asymmetry from TIMED/GUVI observations. J Geophys Res Space Phys 121: 10258–10268. https://doi.org/10.1002/2016JA022730. [CrossRef] [Google Scholar]
- Lyatsky W, Newell PT, Hamza A. 2001. Solar illumination as the cause of the equinoctial preference for geomagnetic activity. Geophys Res Lett 28(12): 2353–2356. https://doi.org/10.1029/2000GL012803. [NASA ADS] [CrossRef] [Google Scholar]
- Maclennan CG, Lanzerotti LJ, Akasofu S-I, Zaitzev AN, Wilkinson PJ, Wolfe A, Popov V. 1991. Comparison of “Electrojet” Indices from the Northern and Southern Hemispheres. J Geophys Res 96(A1): 267–274. https://doi.org/10.1029/90ja01366. [CrossRef] [Google Scholar]
- Mayaud P-N. 1967. Calcul preliminaire d’indices Km, Kn et Ks ou am, an et as, mesures de 1’activite magnetique a 1’echelle mondiale et dans les hemispheres Nord et Sud. Ann Geophys 23: 585–617. [Google Scholar]
- Mayaud P-N. 1980. Derivation, meaning and use of geomagnetic indices, Geophysical Monograph, 22, American Geophysical Union, Washington, DC. https://doi.org/10.1029/GM022. [Google Scholar]
- McIntosh DH. 1959. On the annual variation of magnetic disturbance. Philos Trans R Soc Lond, A 251: 525–552. https://doi.org/10.1098/rsta.1959.0010. [CrossRef] [Google Scholar]
- Milan SE. 2004. Dayside and nightside contributions to the cross polar cap potential: placing an upper limit on a viscous-like interaction. Ann Geophys 22(10): 3771–3777. doi:10.5194/angeo-22-3771-2004. [CrossRef] [Google Scholar]
- Morioka A, Miyoshi Y, Kurita S, Kasaba Y, Angelopoulos V, Misawa H, Kojima H, McFadden JP. 2013. Universal time control of AKR: Earth is a spin-modulated variable radio source. J Geophys Res Space Phys 118: 1123–1131. https://doi.org/10.1002/jgra.50180. [CrossRef] [Google Scholar]
- Nakai H. 1990. A unified view of the influences of the IMF By on geomagnetic activity. J Geomag Geoelec 42(2): 69–91. https://doi.org/10.5636/jgg.42.69. [CrossRef] [Google Scholar]
- Nevanlinna H. 2004. Results of the Helsinki magnetic observatory 1844–1912. Ann Geophys 22(5): 1691–1704. https://doi.org/10.5194/angeo-22-1691-2004. [NASA ADS] [CrossRef] [Google Scholar]
- Newell PT, Gjerloev JW. 2011. Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. J Geophys Res 116: A12211. https://doi.org/10.1029/2011JA016779. [Google Scholar]
- Newell PT, Meng C-I. 1989. Dipole tilt angle effect on the latitude of the cusp and cleft/low-latitude boundary layer. J Geophys Res 94: 6949–6953. https://doi.org/10.1029/ja094ia06p06949. [CrossRef] [Google Scholar]
- Newell PT, Sotirelis T, Skura JP, Meng C-I, Lyatsky W. 2002. Ultraviolet insolation drives seasonal and diurnal space weather variations. J Geophys Res 107(A10): 1305. https://doi.org/10.1029/2001JA000296. [CrossRef] [Google Scholar]
- Oznovich I, Eastes RW, Huffman RE, Tur M, Glaser I. 1993. The aurora at quiet magnetospheric conditions: Repeatability and dipole tilt angle dependence. J Geophys Res 98(A3): 3789–3797. https://doi.org/10.1029/92JA01950. [CrossRef] [Google Scholar]
- Reistad JP, Østgaard N, Laundal KM, Oksavik K. 2013. On the non-conjugacy of nightside aurora and their generator mechanisms. J Geophys Res Space Phys 118: 3394–3406. https://doi.org/10.1002/jgra.50300. [CrossRef] [Google Scholar]
- Russell CT. 1989. The universal time variation of geomagnetic activity. Geophys Res Lett 16(6): 555–558. https://doi.org/10.1029/GL016i006p00555. [CrossRef] [Google Scholar]
- Russell CT, McPherron RL. 1973. Semiannual variation of geomagnetic activity. J Geophys Res 78: 82–108. https://doi.org/10.1029/JA078i001p00092. [Google Scholar]
- Russell CT, Scurry L. 1990. Reply to Comment on ‘The universal time variation of magnetic activity’. Geophys Res Lett 17(3): 309–310. https://doi.org/10.1029/GL017i003p00309. [CrossRef] [Google Scholar]
- Russell CT, Wang YL, Raeder J. 2003. Possible dipole tilt dependence of dayside magnetopause reconnection. Geophys Res Lett 30(18): 1937–1940. https://doi.org/10.1029/2003GL017725. [CrossRef] [Google Scholar]
- Sheng C, Deng Y, Yue X, Huang Y. 2014. Height-integrated Pedersen conductivity in both E and F regions from COSMIC observations. J Atmos Solar-Terr Phys 115–116: 79–86. https://doi.org/10.1016/j.jastp.2013.12.013. [CrossRef] [Google Scholar]
- Singh AK, Rawat R, Pathan BM. 2013. On the UT and seasonal variations of the standard and SuperMAG auroral electrojet indices. J Geophys Res Space Phys 118: 5059–5067. https://doi.org/10.1002/jgra.50488. [CrossRef] [Google Scholar]
- Smith MF, Lockwood M. 1996. The Earth’s magnetospheric cusps. Rev Geophys 34(2): 233–260. https://doi.org/10.1029/96RG00893. [CrossRef] [Google Scholar]
- Stubbs TJ, Vondrak RR, Østgaard N, Sigwarth JB, Frank LA. 2005. Simultaneous observations of the auroral ovals in both hemispheres under varying conditions. Geophys Res Lett 32: L03103. https://doi.org/10.1029/2004GL021199. [CrossRef] [Google Scholar]
- Stenbaek-Nielsen HC. 1974. Indications of a longitudinal component in auroral phenomena. J Geophys Res 79(16): 2521–2523. https://doi.org/10.1029/JA079i016p02521. [CrossRef] [Google Scholar]
- Thébault E, Finlay CC, Beggan D, Alken P, Aubert J, et al. 2015. International Geomagnetic Reference Field: the 12th generation. Earth Planets Space 67: 79. https://doi.org/10.1186/s40623-015-0228-9. [CrossRef] [Google Scholar]
- Troshichev O, Janzhura A, Stauning P. 2006. Unified PCN and PCS indices: Method of calculation, physical sense, and dependence on the IMF azimuthal and northward components. J Geophys Res 111: A05208. https://doi.org/10.1029/2005JA011402. [Google Scholar]
- Tsyganenko NA. 2019. Secular drift of the auroral ovals: How fast do they actually move? Geophys Res Lett 46: 3017–3023. https://doi.org/10.1029/2019GL082159. [CrossRef] [Google Scholar]
- Vasyliunas VM, Kan JR, Siscoe GL, Akasofu S-I. 1982. Scaling relations governing magnetospheric energy transfer. Planet Space Sci 30: 359–365. https://doi.org/10.1016/0032-0633(82)90041-1. [CrossRef] [Google Scholar]
- Vorobjev VG, Yagodkina OI. 2010. Seasonal and UT variations of the position of the auroral precipitation and polar cap boundaries. Geomag Aeron 50(5): 597–605. https://doi.org/10.1134/s0016793210050063. [CrossRef] [Google Scholar]
- Waldo-Lewis RPW, McIntosh DH. 1953. A universal time component in geomagnetic disturbance. J Atmos Terr Phys 4(1/2): 78–80. https://doi.org/10.1016/0021-9169(53)90069-5. [CrossRef] [Google Scholar]
- Wang Y, Du A, Chen G, Cao X, Zhang Y, Li M, Liu X, Guo J. 2014. Comparing the diurnal variations in the SuperMAG auroral electrojet indices SML and SMU. Chin Sci Bull 59: 3877–3883. https://doi.org/10.1007/s11434-014-0451-y. [CrossRef] [Google Scholar]
- Weygand JM, Zesta E, Troshichev O. 2014. Auroral electrojet indices in the Northern and Southern Hemispheres: A statistical comparison. J Geophys Res Space Phys 119: 4819–4840. https://doi.org/10.1002/2013JA019377. [CrossRef] [Google Scholar]
- Wygant JR, Torbert RB, Mozer FS. 1983. Comparison of S3–3 polar cap potential drops with the interplanetary magnetic field and models of magnetopause reconnection. J Geophys Res 88(A7): 5727–5735. https://doi.org/10.1029/ja088ia07p05727. [CrossRef] [Google Scholar]
- Zhao H, Zong QG. 2012. Seasonal and diurnal variation of geomagnetic activity: Russell-McPherron effect during different IMF polarity and/or extreme solar wind conditions. J Geophys Res 117: A11222. https://doi.org/10.1029/2012JA017845. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.