Open Access
Research Article
Issue
J. Space Weather Space Clim.
Volume 11, 2021
Article Number 46
Number of page(s) 9
DOI https://doi.org/10.1051/swsc/2021030
Published online 20 August 2021
  • Alken P, Thébault E, Beggan CD, Amit H, Aubert J, et al. 2021. International geomagnetic reference field: the thirteenth generation. Earth Planets Space 73: 49. https://doi.org/10.1186/s40623-020-01288-x. [CrossRef] [Google Scholar]
  • Allen JH, Kroehl HW. 1975. Spatial and temporal distributions of magnetic effects of auroral electrojets as derived from AE indices. J Geophys Res 80(25): 3667–3677. [CrossRef] [Google Scholar]
  • Brekke A, Egeland A. 1980. Ancient Norwegian literature in relation to the auroral oval. In: Exploration of the Polar Upper Atmosphere. Deehr CS, Holtet JA, (Eds.), Reidel, Dordrech, . pp. 431–442. [CrossRef] [Google Scholar]
  • Ebihara Y, Tanaka T. 2020. How do auroral substorms depend on Earth’s dipole magnetic moment? J Geophys Res Space Phys 126: e2020JA028009. https://doi.org/10.1029/e2020JA028009. [Google Scholar]
  • Fritz H. 1881. Das Polarlicht. F.A. Brockhaus, Leipzig. https://doi.org/10.3931/e-rara-2131. [Google Scholar]
  • Gussenhoven MS, Hardy DA, Burke WJ. 1981. DMSP/F2 electron observations of equatorward auroral boundaries and their relationship to magnetospheric electric fields. J Geophys Res 86: 768–778. [Google Scholar]
  • Gussenhoven MS, Hardy DA, Heinemann N. 1983. Systematics of the equatorward diffuse auroral boundary. J Geophys Res 88: 5692–5708. [Google Scholar]
  • Hardy DA, Holeman EG, Burke WJ, Gentile LC, Bounar KH. 2008. Probability distributions of electron precipitation at high magnetic latitudes. J Geophys Res 113: A6: https://doi.org/10.1029/2007JA012746. [Google Scholar]
  • Hirooka K. 1971. Archaeomagnetic study for the past 2000 years in southwest Japan, Memoirs of the Faculty of Science, Kyoto University. Series of Geol Mineral XXXVIII, 2: 167–207. [Google Scholar]
  • Kamide Y, Kokubun S. 1996. Two-component auroral electrojet: Importance for substorm studies. J Geophys Res 101(A6): 13027–13046. [Google Scholar]
  • Kataoka R, Iwahashi K. 2017. Inclined zenith aurora over Kyoto on 17 September 1770: Graphical evidence of extreme magnetic storm. Space Weather 15: 1314–1320. https://doi.org/10.1002/2017SW001690. [CrossRef] [Google Scholar]
  • Kataoka R, Isobe H, Hayakawa H, Tamazawa H, Kawamura AD, Miyahara H, Iwasaki K, Yamamoto K, Takei M, Terashima T, Suzuki H, Fujiwara Y, Nakamura T. 2017. Historical space weather monitoring of prolonged aurora activities in Japan and in China. Space Weather 15(2): 392–402. https://doi.org/10.1002/2016SW001493. [Google Scholar]
  • Kataoka R, Uchino S, Fujiwara Y, Fujita S, Yamamoto K. 2019. Fan-shaped aurora as seen from Japan during a great magnetic storm on 11 February 1958. J Space Weather Space Clim 9: A16. https://doi.org/10.1051/swsc/2019013. [CrossRef] [Google Scholar]
  • Kataoka R, Kazama S. 2019. A watercolor painting of northern lights seen above Japan on 11 February 1958. J Space Weather Space Clim 9: A28. https://doi.org/10.1051/swsc/2019027. [CrossRef] [Google Scholar]
  • Kataoka R, Yamamoto K, Fujiwara Y, Shiomi K, Kokubun N. 2020. Pheasant tail: Consideration of the shape of the red sign in the Nihon-Shoki. Sokendai Rev. Cultural Social Stud 16: 17–28. [Google Scholar]
  • Keimatsu M, Fukushima N, Nagata T. 1968. Archaeo-aurora and geomagnetic secular variation in historic time. J Geomag Geoele 20(1): 45–50. [Google Scholar]
  • Korte M, Constable C. 2011. Improving geomagnetic field reconstructions for 0–3 ka. 188, 3-4, 247–259. https://doi.org/10.1016/j.pepi.2011.06.017. [Google Scholar]
  • Korte M, Stolze S. 2016. Variations in mid-latitude auroral activity during the Holocene. Archaeometry 58(1): 159–176. [Google Scholar]
  • Lockwood M, Barnard L. 2015. An arch in the UK. Astron Geophys 56: 4.254.30. https://doi.org/10.1093/astrogeo/atv132. [Google Scholar]
  • Matsushita S. 1956. Ancient aurorae seen in Japan. J Geophys Res 61: 297–302. [Google Scholar]
  • Oguti T. 1993a. Prediction of the location and form of the auroral zone: Wandering of the auroral zone out of high latitudes. J Geophys Res 98(A7): 11649–11655. [Google Scholar]
  • Oguti T. 1993b. The auroral zone in historic times – The northern UK was in the auroral zone 300 years ago-. J Geomag Geoelectr 45: 231–242. [Google Scholar]
  • Oguti T. 1993c. A note on the auroral frequency charts by Fritz and Vestine. J Geomag Geoelectr 45: 449–454. [Google Scholar]
  • Oguti T, Egeland A. 1995. Auroral occurrences in Norwegian archives. J Geomag Geoelectr 47: 353–359. [Google Scholar]
  • Yokoyama N, Kamide Y, Miyaoka H. 1998. The size of the auroral belt during magnetic storms. Ann Geophys 16: 566–573. https://doi.org/10.1007/s00585-998-0566-z. [Google Scholar]
  • Richmond AD. 1995. Ionospheric electrodynamics using magnetic apex coordinates. J Geomag Geoelectr 47: 191–212. [Google Scholar]
  • Robert CP, Casella G. 2004. Monte Carlo statistical methods, 2nd edn. Springer Science+Business Media Inc., New York. [Google Scholar]
  • Siscoe GL. 1980. Evidence in the auroral record for secular solar variability. Rev Geophys Space Phys 18(3): 647–658. [Google Scholar]
  • Tsyganenko NA. 2019. Secular drift of the auroral ovals: How fast do they actually move? Geophys Res Lett 46: 3017–3023. https://doi.org/10.1029/2019GL082159. [Google Scholar]
  • Vasquez M, Vaquero JM, Gallego MC, Roca Cortes T, Palle PL. 2016. Long-term trends and Gleissberg cycles in aurora borealis records (1600–2015). Solar Phys 291: 613–642. https://doi.org/10.1007/s11207-016-0849-6. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.