Open Access
Issue |
J. Space Weather Space Clim.
Volume 11, 2021
|
|
---|---|---|
Article Number | 60 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/swsc/2021045 | |
Published online | 24 December 2021 |
- Ayala Solares JR, Wei H-L, Boynton RJ, Walker SN, Billings SA. 2016. Modeling and prediction of global magnetic disturbance in near-Earth space: A case study for Kp index using NARX models. Space Weather 14: 899–916. https://doi.org/10.1002/2016SW001463. [CrossRef] [Google Scholar]
- Akasofu S-I. 1981. Prediction of development of geomagnetic storms using the solar wind-magnetosphere energy coupling function ϵ. Planet Space Sci 29(11): 1151–1158. https://doi.org/10.1016/0032-0633(81)90121-5. [CrossRef] [Google Scholar]
- Baker DN, Hones EW, Payne JB, Feldman WC. 1981. A high time resolution study of interplanetary parameter correlations with AE. Geophys Res Lett 8(2): 179–182. https://doi.org/10.1029/GL008i002p00179. [CrossRef] [Google Scholar]
- Baudin M, Dutfoy A, Iooss B, Popelin A-L. 2015. Open TURNS: an industrial software for uncertainty quantification in simulation. arXiv:1501.05242 [math, stat]. [Google Scholar]
- Berndt DJ, Clifford J. 1994. Using dynamic time warping to find patterns in time series. In: Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, AAAIWS’94, AAAI Press, Seattle, WA. pp. 359–370. [Google Scholar]
- Bernoux G, Maget V. 2020. Characterizing extreme geomagnetic storms using extreme value analysis: a discussion on the representativeness of short data sets. Space Weather 18(6): e2020SW002,450. https://doi.org/10.1029/2020SW002450. [CrossRef] [Google Scholar]
- Borovsky JE, Shprits YY. 2017. Is the Dst index sufficient to define all geospace storms? J Geophys Res Space Phys 122(11): 11543–11547. https://doi.org/10.1002/2017JA024679. [Google Scholar]
- Borovsky JE, Yakymenko K. 2017. Systems science of the magnetosphere: creating indices of substorm activity, of the substorm-injected electron population, and of the electron radiation belt. J Geophys Res Space Phys 122(10): 10012–10035. https://doi.org/10.1002/2017JA024250. [Google Scholar]
- Burton RK, McPherron RL, Russell CT. 1975. An empirical relationship between interplanetary conditions and Dst. J Geophys Res (1896–1977) 80(31): 4204–4214. https://doi.org/10.1029/JA080i031p04204. [CrossRef] [Google Scholar]
- Camporeale E. 2019. The challenge of machine learning in space weather: nowcasting and forecasting. Space Weather 17(8): 1166–1207. https://doi.org/10.1029/2018SW002061. [CrossRef] [Google Scholar]
- Carè A, Camporeale E. 2018. Chapter 4 – Regression. In: Machine Learning Techniques for Space Weather. Camporeale E, Wing S, Johnson JR, (Eds.) Elsevier. pp. 71–112. ISBN 978-0-12-811788-0. https://doi.org/10.1016/B978-0-12-811788-0.00004-4. [CrossRef] [Google Scholar]
- Chakraborty S, Morley SK. 2020. Probabilistic prediction of geomagnetic storms and the Kp index. J Space Weather Space Clim 10: 36. https://doi.org/10.1051/swsc/2020037. [CrossRef] [EDP Sciences] [Google Scholar]
- Chandorkar M, Camporeale E, Wing S. 2017. Probabilistic forecasting of the disturbance storm time index: an autoregressive gaussian process approach. Space Weather 15(8): 1004–1019. https://doi.org/10.1002/2017SW001627. [CrossRef] [Google Scholar]
- Chi Y, Shen C, Luo B, Wang Y, Xu M. 2018. Geoeffectiveness of stream interaction regions from 1995 to 2016. Space Weather 16(12): 1960–1971. https://doi.org/10.1029/2018SW001894. [NASA ADS] [CrossRef] [Google Scholar]
- Chi Y, Shen C, Wang Y, Xu M, Ye P, Wang S. 2016. Statistical study of the interplanetary coronal mass ejections from 1995 to 2015. Sol Phys 291(8): 2419–2439. https://doi.org/10.1007/s11207-016-0971-5. [CrossRef] [Google Scholar]
- Forsyth C, Watt CEJ, Mooney MK, Rae IJ, Walton SD, Horne RB. 2020. Forecasting GOES 15 >2 MeV electron fluxes from solar wind data and geomagnetic indices. Space Weather 18(8): e2019SW002,416. https://doi.org/10.1029/2019SW002416. [CrossRef] [Google Scholar]
- Frías-Paredes L, Mallor F, León T, Gastón-Romeo M. 2016. Introducing the temporal distortion index to perform a bidimensional analysis of renewable energy forecast. Energy 94: 180–194. https://doi.org/10.1016/j.energy.2015.10.093. [CrossRef] [Google Scholar]
- Ghil M, Allen MR, Dettinger MD, Ide K, Kondrashov D, et al. 2002. Advanced spectral methods for climatic time series. Rev Geophys 40(1): 3–1–3–41. https://doi.org/10.1029/2000RG000092. [Google Scholar]
- Gold O, Sharir M. 2018. Dynamic time warping and geometric edit distance: breaking the quadratic barrier. ACM Trans Algorithm 14(4): 50:1–50:17. https://doi.org/10.1145/3230734. [CrossRef] [Google Scholar]
- Goodfellow I, Bengio Y, Courville A. 2016. Deep learning. The MIT Press, Cambridge, MA, illustrated edition edn. ISBN 978-0-262-03561-3. [Google Scholar]
- Gruet M, Chandorkar M, Sicard A, Camporeale E. 2018. Multiple-hour-ahead forecast of the Dst index using a combination of long short-term memory neural network and Gaussian process. Space Weather 16(11): 1882–1896. https://doi.org/10.1029/2018SW001898. [CrossRef] [Google Scholar]
- Guen VL, Thome N. 2019. Shape and time distortion loss for training deep time series forecasting models. arXiv:1909.09020 [cs, stat]. [Google Scholar]
- Hochreiter S. 1998. The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int J Uncertain Fuzziness Knowlege-Based Syst 06(2): 107–116. https://doi.org/10.1142/S0218488598000094. [CrossRef] [Google Scholar]
- Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Comput 9(8): 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735. [Google Scholar]
- Horne RB, Glauert SA, Meredith NP, Boscher D, Maget V, Heynderickx D, Pitchford D. 2013. Space weather impacts on satellites and forecasting the Earth’s electron radiation belts with SPACECAST. Space Weather 11(4): 169–186. https://doi.org/10.1002/swe.20023. [CrossRef] [Google Scholar]
- King JH, Papitashvili NE. 2005. Solar wind spatial scales in and comparisons of hourly wind and ACE Plasma and magnetic field data. J Geophys Res Space Phys 110, A02104. https://doi.org/10.1029/2004JA010649. [Google Scholar]
- Kingma DP, Ba J. 2017. Adam: A method for stochastic optimization. arXiv:1412.6980 [cs]. [Google Scholar]
- Kondrashov D, Denton R, Shprits YY, Singer HJ. 2014. Reconstruction of gaps in the past history of solar wind parameters. Geophys Res Lett 41(8): 2702–2707. https://doi.org/10.1002/2014GL059741. [CrossRef] [Google Scholar]
- Kondrashov D, Ghil M. 2006. Spatio-temporal filling of missing points in geophysical data sets. Nonlinear Process Geophys 13(2): n/a. https://doi.org/10.5194/npg-13-151-2006. [CrossRef] [Google Scholar]
- Kondrashov D, Shprits Y, Ghil M. 2010. Gap filling of solar wind data by singular spectrum analysis. Geophys Res Lett 37(15): https://doi.org/10.1029/2010GL044138. [Google Scholar]
- Laperre B, Amaya J, Lapenta G. 2020. Dynamic time warping as a new evaluation for Dst forecast with machine learning. Front Astron Space Sci 7. https://doi.org/10.3389/fspas.2020.00039. [CrossRef] [Google Scholar]
- Lazzús JA, Vega P, Rojas P, Salfate I. 2017. Forecasting the Dst index using a swarm-optimized neural network. Space Weather 15(8): 1068–1089. https://doi.org/10.1002/2017SW001608. [Google Scholar]
- Lethy A, El-Eraki MA, Samy A, Deebes HA. 2018. Prediction of the Dst index and analysis of its dependence on solar wind parameters using neural network. Space Weather 16(9): 1277–1290. https://doi.org/10.1029/2018SW001863. [CrossRef] [Google Scholar]
- Ling AG, Ginet GP, Hilmer RV, Perry KL. 2010. A neural network– based geosynchronous relativistic electron flux forecasting model. Space Weather 8, S09003. https://doi.org/10.1029/2010SW000576. [Google Scholar]
- Lundstedt H, Wintoft P. 1994. Prediction of geomagnetic storms from solar wind data with the use of a neural network. Ann Geophys 12(1): 19–24. https://doi.org/10.1007/s00585-994-0019-2. [CrossRef] [Google Scholar]
- Matéo-Vélez J-C, Sicard A, Payan D, Ganushkina N, Meredith NP, Sillanpäa I. 2018. Spacecraft surface charging induced by severe environments at geosynchronous orbit. Space Weather 16(1): 89–106. https://doi.org/10.1002/2017SW001689. [CrossRef] [Google Scholar]
- Mayaud P-N. 1971. Une mesure planétaire d’activité magnétique basée sur deux observatoires antipodaux. Ann Geophys 27: 67–70. [Google Scholar]
- Mayaud P-N. 1980. Derivation, meaning, and use of geomagnetic indices. Geophysical Monograph 22. American Geophysical Union, Washington. ISBN 978-0-87590-022-3. [Google Scholar]
- McComas DJ, Bame SJ, Barraclough BL, Donart JR, Elphic RC, Gosling JT, Moldwin MB, Moore KR, Thomsen MF. 1993. Magnetospheric plasma analyzer: initial three-spacecraft observations from Geosynchronous Orbit. J Geophys Res Space Phys 98(A8): 13453–13465. https://doi.org/10.1029/93JA00726. [CrossRef] [Google Scholar]
- Meredith NP, Horne RB, Glauert SA, Thorne RM, Summers D, Albert JM, Anderson RR. 2006. Energetic outer zone electron loss timescales during low geomagnetic activity. J Geophys Res Space Phys 111, A05212. https://doi.org/10.1029/2005JA011516. [Google Scholar]
- Paszke A, Gross S, Massa F, Lerer A, Bradbury J, et al. 2019. PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, Vol. 32. Wallach H, Larochelle H, Beygelzimer A, dAlché-Buc F, Fox E, Garnett R, (Eds.) Curran Associates Inc. pp. 8024–8035. [Google Scholar]
- Riley P, Baker D, Liu YD, Verronen P, Singer H, Güdel M. 2017. Extreme space weather events: from cradle to grave. Space Sci Rev 214(1): 21. https://doi.org/10.1007/s11214-017-0456-3. [Google Scholar]
- Rochel S, Boscher D, Benacquista R, Roussel JF. 2016. A radiation belt disturbance study from the space weather point of view. Acta Astron 128: 650–656. https://doi.org/10.1016/j.actaastro.2016.07.012. [CrossRef] [Google Scholar]
- Rumelhart DE, Hinton GE, Williams RJ. 1986. Learning representations by back-propagating errors. Nature 323(6088): 533–536. https://doi.org/10.1038/323533a0. [CrossRef] [Google Scholar]
- Sexton ES, Nykyri K, Ma X. 2019. Kp forecasting with a recurrent neural network. J Space Weather Space Clim 9: A19. https://doi.org/10.1051/swsc/2019020. [CrossRef] [EDP Sciences] [Google Scholar]
- Sobol’ I.M.. 1967. On the distribution of points in a cube and the approximate evaluation of integrals. USSR Comput Math Math Phys 7(4): 86–112. https://doi.org/10.1016/0041-5553(67)90144-9. [CrossRef] [Google Scholar]
- Tan Y, Hu Q, Wang Z, Zhong Q. 2018. Geomagnetic index Kp forecasting with LSTM. Space Weather 16(4): 406–416. https://doi.org/10.1002/2017SW001764. [CrossRef] [Google Scholar]
- Vallance L, Charbonnier B, Paul N, Dubost S, Blanc P. 2017. Towards a standardized procedure to assess solar forecast accuracy: a new ramp and time alignment metric. Sol Ener 150: 408–422. https://doi.org/10.1016/j.solener.2017.04.064. [CrossRef] [Google Scholar]
- Vautard R, Yiou P, Ghil M. 1992. Singular-spectrum analysis: a toolkit for short, noisy chaotic signals. Phys D: Nonlinear Phenom 58(1): 95–126. https://doi.org/10.1016/0167-2789(92)90103-T. [CrossRef] [Google Scholar]
- Wei L, Zhong Q, Lin R, Wang J, Liu S, Cao Y. 2018. Quantitative prediction of high-energy electron integral flux at geostationary orbit based on deep learning. Space Weather 16(7): 903–916. https://doi.org/10.1029/2018SW001829. [CrossRef] [Google Scholar]
- Wing S, Johnson JR, Camporeale E, Reeves GD. 2016. Information theoretical approach to discovering solar wind drivers of the outer radiation belt. J Geophys Res Space Phys 121(10): 9378–9399. https://doi.org/10.1002/2016JA022711. [CrossRef] [Google Scholar]
- Wing S, Johnson JR, Jen J, Meng C-I, Sibeck DG, Bechtold K, Freeman J, Costello K, Balikhin M, Takahashi K. 2005. Kp Forecast Models. J Geophys Res Space Phys 110, A04203. https://doi.org/10.1029/2004JA010500. [Google Scholar]
- Wintoft P, Wik M. 2018. Evaluation of Kp and Dst predictions using ACE and DSCOVR solar wind data. Space Weather 16(12): 1972–1983. https://doi.org/10.1029/2018SW001994. [CrossRef] [Google Scholar]
- Wintoft P, Wik M, Matzka J, Shprits Y. 2017. Forecasting Kp from solar wind data: input parameter study using 3-hour averages and 3-hour range values. J Space Weather Space Clim 7: A29. https://doi.org/10.1051/swsc/2017027. [CrossRef] [EDP Sciences] [Google Scholar]
- Wu J-G, Lundstedt H. 1997. Geomagnetic storm predictions from solar wind data with the use of dynamic neural networks. J Geophys Res Space Phys 102(A7): 14255–14268. https://doi.org/10.1029/97JA00975. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.