Open Access
Issue |
J. Space Weather Space Clim.
Volume 12, 2022
|
|
---|---|---|
Article Number | 6 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/swsc/2022005 | |
Published online | 01 April 2022 |
- Anderson CN. 1928. Correlation of long wave transatlantic radio transmission with other factors affected by solar activity. Proc IRE 16: 297–347. https://doi.org/10.1109/JRPROC.1928.221400. [CrossRef] [Google Scholar]
- Buonsanto MJ. 1999. Ionospheric storm – A review. Space Sci Rev 88: 563–601. https://doi.org/10.1023/A:1005107532631. [CrossRef] [Google Scholar]
- Buresova D, Lastovicka J, Hejda P, Bochnicek J. 2014. Ionospheric disturbances under low solar activity conditions. Adv Space Res 54: 185–196. https://doi.org/10.1016/j.asr.2014.04.007. [CrossRef] [Google Scholar]
- Chen Y, Liu L, Le H. 2008. Solar activity variations of nighttime ionospheric peak electron density. J Geophys Res 113: A11306. https://doi.org/10.1029/2008JA013114. [Google Scholar]
- Chen Y, Liu L, Wan W. 2011. Does the F10.7 index correctly describe solar EUV flux during the deep solar minimum of 2007–2009? J Geophys Res 116: A04304. https://doi.org/10.1029/2010JA016301. [Google Scholar]
- Chen Y, Liu L, Wan W. 2012. The discrepancy in solar EUV-proxy correlations on solar cycle and solar rotation timescales and its manifestation in the ionosphere. J Geophys Res 117: A03313. https://doi.org/10.1029/2011JA017224. [Google Scholar]
- Chen Y, Liu L, Le H, Wan W. 2014a. Geomagnetic activity effect on the global ionosphere during the 2007–2009 deep solar minimum. J Geophys Res (Space Phys) 119: 3747–3754. https://doi.org/10.1002/2013JA019692. [CrossRef] [Google Scholar]
- Chen Y, Liu L, Le H, Wan W. 2014b. How does ionospheric TEC vary if solar EUV irradiance continuously decreases? Earth Planet Space 66: 52. https://doi.org/10.1186/1880-5981-66-52. [CrossRef] [Google Scholar]
- Chen Y, Liu L, Le H, Zhang H. 2015. Discrepant responses of the global electron content to the solar cycle and solar rotation variations of EUV irradiance. Earth Planet Space 67: 80. https://doi.org/10.1186/s40623-015-0251-x. [CrossRef] [Google Scholar]
- Chen Y, Liu L, Le H, Wan W. 2018. Responses of solar irradiance and the ionosphere to an intense activity region. J Geophys Res (Space Phys) 123: 2116–2126. https://doi.org/10.1002/2017JA024765. [Google Scholar]
- Coley WR, Heelis RA. 2012. Response of the equatorial topside ionosphere to 27-day variations in solar EUV input during a low solar activity period using C/NOFS. J Geophys Res 117: A03330. https://doi.org/10.1029/2011JA017301. [Google Scholar]
- Danilov AD. 2013. Ionospheric F-region response to geomagnetic disturbances. Adv Space Res 52: 343–366. https://doi.org/10.1016/j.asr.2013.04.019. [CrossRef] [Google Scholar]
- Elias AG. 2014. Filtering ionosphere parameters to detect trends linked to anthropogenic effects. Earth Planet Space 66: 113. https://doi.org/10.1186/1880-5981-66-113. [CrossRef] [Google Scholar]
- Emmert JT, Mannucci AJ, McDonald SE, Vergados P. 2017. Attribution of interminimum changes in global and hemispheric total electron content. J Geophys Res (Space Phys) 122: 2424–2439. https://doi.org/10.1002/2016JA023680. [CrossRef] [Google Scholar]
- Fares Saba MM, Gonzalez WD, Clúa de Gonzalez AL. 1997. Relationships between the AE, ap and Dst indices near solar minimum (1974) and at solar maximum (1979). Ann Geophys 15: 1265–1270. https://doi.org/10.1007/s00585-997-1265-x. [CrossRef] [Google Scholar]
- Field PR, Rishbeth H. 1997. The response of the ionospheric F2-layer to geomagnetic activity: an analysis of worldwide data. J Atmos Sol Terr Phys 59: 163–180. https://doi.org/10.1016/S1364-6826(96)00085-5. [CrossRef] [Google Scholar]
- Field PR, Rishbeth H, Moffett RJ, Idenden DW, Fuller-Rowell TJ, Millward GH, Aylward AD. 1998. Modelling composition changes in F-layer storms. J Atmos Sol Terr Phys 60: 523–543. https://doi.org/10.1016/S1364-6826(97)00074-6. [CrossRef] [Google Scholar]
- Forbes JM, Palo SE, Zhang X. 2000. Variability of the ionosphere. J Atmos Sol Terr Phys 62: 685–693. https://doi.org/10.1016/S1364-6826(00)00029-8. [CrossRef] [Google Scholar]
- Fuller-Rowell TJ, Codrescu MV, Moffett RJ, Quegan S. 1994. Response of the thermosphere and ionosphere to geomagnetic storms. J Geophys Res 99: 3893–3914. https://doi.org/10.1029/93JA02015. [CrossRef] [Google Scholar]
- Fuller-Rowell TJ, Codrescu MV, Rishbeth H, Moffett RJ, Quegan S. 1996. On the seasonal response of the thermosphere and ionosphere to geomagnetic storms. J Geophys Res 101: 2343–2353. https://doi.org/10.1029/95JA01614. [CrossRef] [Google Scholar]
- Gonzalez WD, Joselyn JA, Kamide Y, Kroehl HW, Rostoker G, Tsurutani BT, Vasyliunas VM. 1994. What is a geomagnetic storm? J Geophys Res 99: 5771–5792. https://doi.org/10.1029/93JA02867. [CrossRef] [Google Scholar]
- Gonzalez WD, Tsurutani BT, Clύa de Gonzalez AL. 1999. Interplanetary origin of geomagnetic storms. Space Sci Rev 88: 529–562. https://doi.org/10.1023/A:1005160129098. [CrossRef] [Google Scholar]
- Hafstad LR, Tuve MA. 1929. Note on Kennelly-Heaviside layer observations during a magnetic storm. Terr Magn Atmos Electr 34: 39–44. https://doi.org/10.1029/TE034i001p00039. [CrossRef] [Google Scholar]
- Judge DL, McMullin DR, Ogawa HS, Hovestadt D, Klecker B, et al. 1998. First solar EUV irradiances obtained from SOHO by the CELIAS/SEM. Sol Phys 177: 161–173. https://doi.org/10.1023/A:1004929011427. [CrossRef] [Google Scholar]
- Lei J, Thayer JP, Forbes JM, Wu Q, She C, Wan W, Wang W. 2008. Ionosphere response to solar wind high-speed streams. Geophys Res Lett 35: L19105. https://doi.org/10.1029/2008GL035208. [CrossRef] [Google Scholar]
- Liu L, Wan W, Ning B, Pirog OM, Kurkin VI. 2006. Solar activity variations of the ionospheric peak electron density. J Geophys Res 111: A08304. https://doi.org/10.1029/2006JA011598. [Google Scholar]
- Liu L, Zhao B, Wan W, Ning B, Zhang M-L, He M. 2009. Seasonal variations of the ionospheric electron densities retrieved from constellation observing system for meteorology, ionosphere, and climate mission radio occultation measurements. J Geophys Res 114: A02302. https://doi.org/10.1029/2008JA013819. [Google Scholar]
- Mayaud PN. 1980. Derivation, meaning, and use of geomagnetic indices. Geophys Monogr 22, AGU, Washington DC. https://doi.org/10.1029/GM022. [Google Scholar]
- Mendillo M. 2006. Storms in the ionosphere: Patterns and processes for total electron content. Rev Geophys 44: RG4001. https://doi.org/10.1029/2005RG000193. [CrossRef] [Google Scholar]
- Mendillo M, Rishbeth H, Roble RG, Wroten J. 2002. Modelling F2-layer seasonal trends and day-to-day variability driven by coupling with the lower atmosphere. J Atmos Sol Terr Phys 64: 1911–1931. https://doi.org/10.1016/S1364-6826(02)00193-1. [CrossRef] [Google Scholar]
- Min K, Park J, Kim H, Kim V, Kil H, Lee J, Rentz S, Lühr H, Paxton L. 2009. The 27-day modulation of the low-latitude ionosphere during a solar maximum. J Geophys Res 114: A04317. https://doi.org/10.1029/2008JA013881. [Google Scholar]
- Pedatella NM, Lei J, Thayer JP, Forbes JM. 2010. Ionosphere response to recurrent geomagnetic activity: Local time dependency. J Geophys Res 115: A02301. https://doi.org/10.1029/2009JA014712. [Google Scholar]
- Prölss GW. 1995. Ionospheric F-region storms. In: Handbook of atmospheric electrodynamics, Vol. II, CRC Press, Boca Raton, FL, pp. 195–248. https://doi.org/10.1201/9780203713297. [Google Scholar]
- Rich FJ, Sultan PJ, Burke WJ. 2003. The 27-day variations of plasma densities and temperatures in the topside ionosphere. J Geophys Res 108(A7): 1297. https://doi.org/10.1029/2002JA009731. [CrossRef] [Google Scholar]
- Richards PG, Fennelly JA, Torr DG. 1994. EUVAC: A solar EUV flux model for aeronomic calculations. J Geophys Res 99: 8981–8992. https://doi.org/10.1029/94JA00518. [CrossRef] [Google Scholar]
- Rishbeth H. 1975. F-region storms and thermospheric circulation. J Atmos Terr Phys 37: 1055–1064. https://doi.org/10.1016/0021-9169(75)90013-6. [CrossRef] [Google Scholar]
- Rishbeth H, Fuller-Rowell TJ, Rees D. 1987. Diffusive equilibrium and vertical motion in the thermosphere during a severe magnetic storm: A computational study. Planet Space Sci 35(9): 1157–1165. https://doi.org/10.1016/0032-0633(87)90022-5. [CrossRef] [Google Scholar]
- Rishbeth H, Mendillo M. 2001. Patterns of F2-layer variability. J Atmos Sol Terr Phys 63: 1661–1680. https://doi.org/10.1016/S1364-6826(01)00036-0. [CrossRef] [Google Scholar]
- Sethi NK, Goel MK, Mahajan KK. 2002. Solar cycle variations of foF2 from IGY to 1990. Ann Geophys 20: 1677–1685. https://doi.org/10.5194/angeo-20-1677-2002. [CrossRef] [Google Scholar]
- Solomon SC, Qian L, Burns AG. 2013. The anomalous ionosphere between solar cycles 23 and 24. J Geophys Res (Space Phys) 118: 6524–6535. https://doi.org/10.1002/jgra.50561. [CrossRef] [Google Scholar]
- Solomon SC, Qian L, Mannucci AJ. 2018. Ionospheric electron content during solar cycle 23. J Geophys Res (Space Phys) 123: 5223–5231. https://doi.org/10.1029/2018JA025464. [CrossRef] [Google Scholar]
- Tsurutani BT, Gonzalez WD, Gonzalez ALC, Guarnieri FL, Gopalswamy N, et al. 2006a. Corotating solar wind streams and recurrent geomagnetic activity: A review. J Geophys Res 111: A07S01. https://doi.org/10.1029/2005JA011273. [Google Scholar]
- Tsurutani BT, Mannucci AJ, Iijima BA, Komjathy A, Saito A, et al. 2006b. Dayside ionospheric (GPS) response to corotating solar wind streams. In: Recurrent magnetic storms: Corotating solar wind streams, Tsurutani B, McPherron R, Gonzalez W, Lu G, Sobral JHA, Gopalswamy N (Eds.), American Geophysical Union, Washington, DC, pp. 245–270. https://doi.org/10.1029/167GM20. [CrossRef] [Google Scholar]
- Tsurutani BT, McPherron RL, Gonzalez WD, Lu G, Sobral JHA, Gopalswamy N. 2006c. Introduction to special section on corotating solar wind streams and recurrent geomagnetic activity. J Geophys Res 111: A07S00. https://doi.org/10.1029/2006JA011745. [Google Scholar]
- Tsurutani BT, Verkhoglyadova OP, Mannucci AJ, Saito A, Araki T, et al. 2008. Prompt penetration electric fields (PPEFs) and their ionospheric effects during the great magnetic storm of 30–31 October 2003. J Geophys Res 113: A05311. https://doi.org/10.1029/2007JA012879. [Google Scholar]
- Tulasi Ram S, Lei J, Su S-Y, Liu CH, Lin CH, Chen WS. 2010. Dayside ionospheric response to recurrent geomagnetic activity during the extreme solar minimum of 2008. Geophys Res Lett 37: L02101. https://doi.org/10.1029/2009GL041038. [Google Scholar]
- Vaishnav R, Jacobi C, Berdermann J. 2019. Long-term trends in the ionospheric response to solar extreme-ultraviolat variations. Ann Geophys 37: 1141–1159. https://doi.org/10.5194/angeo-37-1141-2019. [CrossRef] [Google Scholar]
- Wang W, Lei J, Burns AG, Qian L, Solomon SC, Wiltberger M, Xu J. 2011. Ionospheric day-to-day variability around the whole heliosphere interval in 2008. Sol Phys 274: 457–472. https://doi.org/10.1007/s11207-011-9747-0. [CrossRef] [Google Scholar]
- Woods TN, Eparvier FG, Bailey SM, Chamberlin PC, Lean J, Rottman GJ, Solomon SC, Tobiska WK, Woodraska DL. 2005. Solar EUV experiment (SEE): Mission overview and first results. J Geophys Res 110: A01312. https://doi.org/10.1029/2004JA010765. [CrossRef] [Google Scholar]
- Xu J, Ma R, Wang W. 2012. Terannual variation in the F2 layer peak electron density (NmF2) at middle latitudes. J Geophys Res 117: A01308. https://doi.org/10.1029/2011JA017191. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.