Open Access
Issue |
J. Space Weather Space Clim.
Volume 12, 2022
|
|
---|---|---|
Article Number | 5 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/swsc/2022003 | |
Published online | 01 April 2022 |
- Adriani O, Barbarino GC, Bazilevskaya GA, Bellotti R, Boezio M. 2015. PAMELA’s measurements of magnetospheric effects on high energy solar particles. Astrophys J 801: L3. https://doi.org/10.1088/2041-8205/801/1/L3. [CrossRef] [Google Scholar]
- Atwell W, Tylka A, Dietrich W. 2009. Radiation exposures from several ground level enhancements during the 23rd solar cycle. In: AIAA SPACE 2009 Conference & Exposition, Pasadena, CA, 14–17 September 2009. https://doi.org/10.2514/6.2009-6597. [Google Scholar]
- Bruno A. 2017. Calibration of the GOES 13/15 high-energy proton detectors based on the PAMELA solar energetic particle observations. Space Weather 15: 1191–1202. https://doi.org/10.1002/2017SW001672. [CrossRef] [Google Scholar]
- Bruno A, Adriani O, Barbarino GC, Bazilevskaya GA, Bellotti R, et al. 2016. The May 17, 2012 solar event: Back-tracing analysis and flux reconstruction with PAMELA. J Phys 675: 32006. https://doi.org/10.1088/1742-6596/675/3/032006. [Google Scholar]
- Bruno A, Bazilevskaya GA, Boezio M, Christian ER, de Nolfo GA, et al. 2018. Solar energetic particle events observed by the PAMELA mission. Astrophys J 862(2): 97. https://doi.org/10.3847/1538-4357/aacc26. [CrossRef] [Google Scholar]
- Bruno A, Christian ER, de Nolfo GA, Richardson IG, Ryan JM. 2019. Spectral analysis of the September 2017 solar energetic particle events. Space Weather 17: 419–437. https://doi.org/10.1029/2018SW002085. [CrossRef] [Google Scholar]
- Desai M, Giacalone J. 2016. Large gradual solar energetic particle events. Living Rev Sol Phys 13: 3. https://doi.org/10.1007/s41116-016-0002-5. [CrossRef] [Google Scholar]
- Dichter BK, Galica GE, McGarity JO, Tsui S, Golightly MJ, Lopate C, Connell JJ. 2015. Specification, design, and calibration of the space weather suite of instruments on the NOAA GOES-R program spacecraft. IEEE Trans Nucl Sci 62(6): 2776–2783. https://doi.org/10.1109/TNS.2015.2477997. [CrossRef] [Google Scholar]
- Hu S, Barzilla JE, Semones E. 2020. Acute radiation risk assessment and mitigation strategies in near future exploration spaceflights. Life Sci Space Res 24: 25–33. https://doi.org/10.1016/j.lssr.2019.10.006. [CrossRef] [Google Scholar]
- Hu S, Zeitlin C, Atwell W, Fry D, Barzilla JE, Semones E. 2016. Segmental interpolating spectra for solar particle events and in situ validation. Space Weather 14: 742–753. https://doi.org/10.1002/2016SW001476. [CrossRef] [Google Scholar]
- Jiggens P, Chavy-Macdonald MA, Santin G, Menicucci A, Evans H, Hilgers A. 2014. The magnitude and effects of extreme solar particle events. J Space Weather Space Clim 4: A20. https://doi.org/10.1051/swsc/2014017. [CrossRef] [EDP Sciences] [Google Scholar]
- Koldobskiy S, Raukunen O, Vainio R, Kovaltsov GA, Usoskin I. 2021. New reconstruction of event-integrated spectra (spectral fluences) for major solar energetic particle events. A&A 647: A132. https://doi.org/10.1051/0004-6361/202040058. [CrossRef] [EDP Sciences] [Google Scholar]
- Kress BT, Rodriguez JV, Onsager TG. 2020. The GOES-R space environment in situ suite (SEISS): Measurement of energetic particles in geospace. In: The GOES-R series: A new generation of geostationary environmental satellites, Goodman SJ, Schmit TJ, Daniels J, Redmon RJ (Eds.), Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-814327-8.00020-2. [Google Scholar]
- Kress BT, Rodriguez JV, Boudouridis A, Onsager TG, Dichter BK, Galica GE, Tsui S. 2021. Observations from NOAA’s newest solar proton sensor. Space Weather 19: e2021SW002750. https://doi.org/10.1029/2021SW002750. [CrossRef] [Google Scholar]
- Li G, Lee MA. 2015. Scatter-dominated interplanetary transport of solar energetic particles in large gradual events and the formation of double power-law differential fluence spectra of ground-level events during solar cycle 23. Astrophys J 810: 82. https://doi.org/10.1088/0004-637X/810/1/82. [CrossRef] [Google Scholar]
- Lovell JL, Duldig ML, Humble JE. 1998. An extended analysis of the September 1989 cosmic ray ground level enhancement. J Geophys Res 103(A10): 23733–23742. https://doi.org/10.1029/98JA02100. [CrossRef] [Google Scholar]
- Miroshnichenko LI. 2018. Retrospective analysis of GLEs and estimates of radiation risks. J Space Weather Space Clim 8: A52. https://doi.org/10.1051/swsc/2018042. [CrossRef] [EDP Sciences] [Google Scholar]
- Mottl D, Nymmik R. 2007. The issues of reliability of solar energetic proton flux databases and models. Adv Space Res 39(8): 1355–1361. https://doi.org/10.1016/j.asr.2007.01.055. [CrossRef] [Google Scholar]
- Onsager TG, Grubb R, Kunches J, Matheson L, Speich D, Zwickl R, Sauert H. 1996. Operational uses of the GOES energetic particle detectors. In: Proc. SPIE, GOES-8 and Beyond, Denver, CO, United States, 18 October 1996, Vol. 2812, pp. 281–290. https://doi.org/10.1117/12.254075. [Google Scholar]
- Panametrics Inc. 1995. Calibration report for the EPS Dome Sensor response to protons, Waltham, Mass. Tech. Rep. NXT-CAL-102. Available at http://www.ngdc.noaa.gov/stp/satellite/goes/documentation.html. [Google Scholar]
- Raukunen O, Vainio R, Tylka AJ, Dietrich WF, Jiggens P, Heynderickx D, Dierckxsens M, Crosby N, Ganse U, Siipola R. 2018. Two solar proton fluence models based on ground level enhancement observations. J Space Weather Space Clim 8: A04. https://doi.org/10.1051/swsc/2017031. [CrossRef] [EDP Sciences] [Google Scholar]
- Raukunen O, Paassilta M, Vainio R, Rodriguez JV, Eronen T, et al. 2020. Very high energy proton peak flux model. J Space Weather Space Clim 10: 24. https://doi.org/10.1051/swsc/2020024. [CrossRef] [EDP Sciences] [Google Scholar]
- Rodriguez JV, Krosschell JC, Green JC. 2014. Intercalibration of GOES 8–15 solar proton detectors. Space Weather 12: 92–109. https://doi.org/10.1002/2013SW000996. [CrossRef] [Google Scholar]
- Rodriguez JV, Sandberg I, Mewaldt RA, Daglis IA, Jiggens P. 2017. Validation of the effect of cross-calibrated GOES solar proton effective energies on derived integral fluxes by comparison with STEREO observations. Space Weather 15: 290–309. https://doi.org/10.1002/2016SW001533. [CrossRef] [Google Scholar]
- Sandberg I, Jiggens P, Heynderickx D, Daglis IA. 2014. Cross calibration of NOAA GOES solar proton detectors using corrected NASA IMP-8/GME data. Geophys Res Lett 41: 4435–4441. https://doi.org/10.1002/2014GL060469. [CrossRef] [Google Scholar]
- Sellers FB, Hanser FA. 1996. Design and calibration of the GOES-8 particle sensors: The EPS and HEPAD. In: GOES-8 and Beyond, Proc. SPIE, Washwell ER (Ed.), Vol. 2812, International Society for Optical Engineering, Bellingham, Wash. pp. 353–364. https://doi.org/10.1117/12.254083. [CrossRef] [Google Scholar]
- Smart DF, Shea MA. 1985. Galactic cosmic rays and solar energetic particles. In: Handbook of geophysics and the space environment, Jursa AS (Ed.), Air Force Research Laboratory, Springfield, VA. https://www.ngdc.noaa.gov/stp/space-weather/online-publications/miscellaneous/afrl_publications/handbook_1985/Chptr06.pdf. [Google Scholar]
- Smart DF, Shea MA. 1999. Comment on the use of GOES solar proton data and spectra in solar proton dose calculations. Rad Meas 30: 327–335. https://doi.org/10.1016/s1350-4487(99)00059-1. [CrossRef] [Google Scholar]
- Townsend LW, Adams JH, Blattnig SR, Clowdsley MS, Fry DJ, et al. 2018. Solar particle event storm shelter requirements for missions beyond low Earth orbit. Life Sci Space Res 17: 32–39. https://doi.org/10.1016/j.lssr.2018.02.002. [CrossRef] [Google Scholar]
- Tylka AJ, Dietrich WF. 2009. A new and comprehensive analysis of proton spectra in ground-level enhanced (GLE) solar particle events. In: Proceedings of the 31st International Cosmic Ray Conference, Łódź, Poland, 7–15 July 2009, Giller M, Szabelski J (Eds.). URL http://icrc2009.uni.lodz.pl/proc/pdf/icrc0273.pdf. [Google Scholar]
- Tylka AJ, Dietrich WF. 2010. Ground-Level Enhanced (GLE) Solar Particle Events at Solar Minimum. In: SOHO-23: Understanding a Peculiar Solar Minimum. Proceedings of a Workshop held 21–25 September 2009 in Northeast Harbor, Maine, USA, Cranmer SR, Hoeksema JT, Kohl JL (Eds.), ASP Conference Series, Vol. 428. https://adsabs.harvard.edu/full/2010ASPC..428..329T. [Google Scholar]
- Usoskin I, Koldobskiy S, Kovaltsov GA, Gil A, Usoskina I, Willamo T, Ibragimov A. 2020. Revised GLE database: Fluences of solar energetic particles as measured by the neutron-monitor network since 1956. A&A 640: A17. https://doi.org/10.1051/0004-6361/202038272. [CrossRef] [EDP Sciences] [Google Scholar]
- Xapsos MA, Barth JL, Stassinopoulos EG, Messenger SR, Walters RJ, Summers GP, Burke EA. 2000. Characterizing solar proton energy spectra for radiation effects applications. IEEE Trans Nucl Sci 47(6): 2218–2223. https://doi.org/10.1109/23.903756. [CrossRef] [Google Scholar]
- Xapsos MA, Stauffer C, Gee GB, Barth JL, Stassinopoulos EG, McGuire RE. 2004. Model for solar proton risk assessment. IEEE Trans Nucl Sci 51(6): 3394–3398. https://doi.org/10.1109/TNS.2004.839159. [CrossRef] [Google Scholar]
- Zhao L, Zhang M, Rassoul HK. 2016. Double power laws in the event-integrated solar energetic particle spectrum. Astrophys J 821(1): 62. https://doi.org/10.3847/0004-637X/821/1/62. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.