Open Access
Issue |
J. Space Weather Space Clim.
Volume 12, 2022
|
|
---|---|---|
Article Number | 18 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/swsc/2022012 | |
Published online | 06 June 2022 |
- Aggarwal KM, Nath N, Setty CSGK. 1979. Collision frequency and transport properties of electrons in the ionosphere. Planet Space Sci 27: 753–768. [CrossRef] [Google Scholar]
- Bailey DK. 1968. Some quantitative aspects of electron precipitation in and near the auroral zone. Rev Geophys 6(3): 289–346. https://doi.org/10.1029/RG006i003p00289. [CrossRef] [Google Scholar]
- Baker DN, Blake JB, Gorney DJ, Higbie PR, Klebesadel RW, King JH. 1987. Highly relativistic magnetospheric electrons: A role in coupling to the middle atmosphere? Geophys Res Lett 14(10): 1027–1030. https://doi.org/10.1029/GL014i010p01027. [CrossRef] [Google Scholar]
- Bland E, Tesema F, Partamies N. 2021. D-region impact area of energetic particle precipitation during pulsating aurora. Ann Geophys 39: 135–149. https://doi.org/10.5194/angeo-39-135-2021. [CrossRef] [Google Scholar]
- Clilverd MA, Rodger CJ, Brundell J, Bähr J, Cobbett N, Moffat-Griffin T, Kavanagh AJ, Seppälä A, Thomson NR, Friedel RHW, Menk FW. 2008. Energetic electron precipitation during substorm injection events: High-latitude fluxes and an unexpected midlatitude signature. J Geophys Res 113: A10311. https://doi.org/10.1029/2008JA013220. [CrossRef] [Google Scholar]
- Cresswell-Moorcock K, Rodger CJ, Kero A, Collier AB, Clilverd MA, Häggström I, Pitkänen T. 2013. A reexamination of latitudinal limits of substorm-produced energetic electron precipitation. J Geophys Res (Space Phys) 118: 6694–6705. https://doi.org/10.1002/jgra.50598. [CrossRef] [Google Scholar]
- Ebihara Y, Tanaka T. 2013. Fundamental properties of substorm time energetic electrons in the innermagnetosphere. J Geophys Res (Space Phys) 118: 1589–1603. https://doi.org/10.1002/jgra.50115. [CrossRef] [Google Scholar]
- Evans DS, Greer MS. 2004. Polar orbiting environmental satellite space environment monitor–2 instrument descriptions and archive data documentation (NOAA Tech. Mem. 1.4). Space Environment Laboratory, Boulder, CO, USA. [Google Scholar]
- Gjerloev JW. 2012. The SuperMAG data processing technique. J Geophys Res 117: A09213. https://doi.org/10.1029/2012JA017683. [Google Scholar]
- Gledhill JA. 1986. The effective recombination coefficient of electrons in the ionosphere between 50 and 150 km. Radio Sci 21(3): 399–408. https://doi.org/10.1029/RS021i003p00399. [CrossRef] [Google Scholar]
- Goldberg RA, Jackman CH, Barcus JR, Søraas F. 1984. Nighttime auroral energy deposition in the middle atmosphere. J Geophys Res (Space Phys) 89: A7. https://doi.org/10.1029/JA089iA07p05581. [Google Scholar]
- Hirayama H, Namito Y, Bielajew AF. 2005. The EGS5 Code System, SLAC-R-730 and KEK Report 2005-8. URL http://rcwww.kek.jp/research/egs/egs5_manual/slac730-150228.pdf [Google Scholar]
- Imhof WL. 1988. Fine resolution measurements of the L-dependent energy threshold for isotropy at the trapping boundary. J Geophys Res 93: 9743–9752. https://doi.org/10.1029/JA093iA09p09743. [CrossRef] [Google Scholar]
- Jaynes AN, Baker DN, Singer H, Rodriguez J, Loto’aniu TM, et al. 2015. Source and seed populations for relativistic electrons: Their roles in radiation belt changes. J Geophys Res (Space Phys) 120: 7240–7254. https://doi.org/10.1002/2015JA021234. [CrossRef] [Google Scholar]
- Jelly D, Brice N. 1967. Changes in Van Allen radiation associated with polar substorms. J Geophys Res 72(23): 5919–5931. https://doi.org/10.1029/JZ072i023p05919. [CrossRef] [Google Scholar]
- Jussila JRT, Aikio AT, Shalimov S, Marple SR. 2004. Cosmic noise absotption events associated with equatorward drifting arc during a substorm growth phase. Ann Geophys 22: 1675–1686. https://doi.org/10.5194/angeo-22-1675-2004. [CrossRef] [Google Scholar]
- Kasahara S, Yokota S, Mitani T, et al. 2018a. Medium-energy particle experiments – electron analyzer (MEP-e) for the exploration of energization and radiation in geospace (ERG) mission. Earth Planets Space 70: 69. https://doi.org/10.1186/s40623-018-0847-z. [CrossRef] [Google Scholar]
- Kasahara Y, Kasaba Y, Kojima H, Yagitani S, Ishikawa K, et al. 2018b. The Plasma Wave Experiment (PWE) onboard the Arase (ERG) satellite. Earth Planets Space 70: 86. https://doi.org/10.1186/s40623-018-0842-4. [CrossRef] [Google Scholar]
- Kasahara S, Yokota S, Hori T, Keika K, Miyoshi Y, Shinohara I. 2018c. Updated daily, The MEP-e instrument Level-2 3-D flux data of Exploration of energization and Radiation in Geospace (ERG) Arase satellite, Version v01.01. ERG Science Center, Institute for Space-Earth Environmental Research, Nagoya University. https://doi.org/10.34515/DATA.ERG-02000; Accessed 2021-01-01. [Google Scholar]
- Kasahara Y, Kojima H, Matsuda S, Ozaki M, Yagitani S, Shoji M, Nakamura S, Kitahara M, Miyoshi Y, Shinohara I. 2018d. Updated daily, The PWE/OFA instrument Level-2 spectrum data of Exploration of energization and Radiation in Geospace (ERG) Arase satellite, Version v02.01. ERG Science CenterInstitute for Space-Earth Environmental Research, Nagoya University. https://doi.org/10.34515/DATA.ERG-08000; Accessed 2021-01-01. [Google Scholar]
- Kataoka R, Nishiyama T, Tanaka Y-M, Kadokura A, Uchida HA, et al. 2019. Transient ionization of the mesosphere during auroral breakup: Arase satellite and ground-based conjugate observations at Syowa Station. Earth Planet Space 71: 9. https://doi.org/10.1186/s40623-019-0989-7. [CrossRef] [Google Scholar]
- Kirkwood S, Eliasson L. 1990. Energetic particle precipitation in the sub storm growth phase measured by EISCAT and Viking. J Geophys Res 95(A5): 6025–6037. https://doi.org/10.1029/JA095iA05p06025. [CrossRef] [Google Scholar]
- Kirkwood S, Barabash V, Belova E, Nilsson H, Rao TN, Stebel K, Osepian A, Chilson PB. 2002. Polar mesosphere winter echoes during solar proton events. Adv Polar Upper Atmos Res 16: 111–125. http://doi.org/10.15094/00006351. [Google Scholar]
- Lübken F-J, Singer W, Latteck R, Strelnikova I. 2007. Radar measurements of turbulence, electron densities, and absolute reflectivities during Polar Mesosphere Winter Echoes (PMWE). Adv Space Res 40: 758–764. https://doi.org/10.1016/j.asr.2007.01.015. [CrossRef] [Google Scholar]
- Matsuda S, Kasahara Y, Kojima H, Kasaba Y, Yagitani S, et al. 2018. Onboard software of plasma wave experiment aboard Arase: Instrument management and signal processing of waveform capture/onboard frequency analyzer. Earth Planets Space 70: 75. https://doi.org/10.1186/s40623-018-0838-0. [CrossRef] [Google Scholar]
- Matsuoka A, Teramoto M, Nomura R, Nose M, Fujimoto A, et al. 2018a. The ARASE (ERG) magnetic field investigation. Earth Planet Space 70: 43. https://doi.org/10.1186/s40623-018-0800-1. [CrossRef] [Google Scholar]
- Matsuoka A, Teramoto M, Imajo S, Kurita S, Miyoshi Y, Shinohara I. 2018b. Updated daily, The MGF instrument Level-2 spin-fit magnetic field data of Exploration of energization and Radiation in Geospace (ERG) Arase satellite, Version v03.03. ERG Science Center, Institute for Space-Earth Environmental Research, Nagoya University. https://doi.org/10.34515/DATA.ERG-06001; Accessed 2021-01-01. [Google Scholar]
- McKay D, Partamies N, Vierinen J. 2018. Pulsating aurora and cosmic noise absorption associated with growth-phase arcs. Ann Geophys 36(1): 59–69. https://doi.org/10.5194/angeo-36-59-2018. [CrossRef] [Google Scholar]
- Mitani T, Takashima T, Kasahara S, Miyake W, Hirahara M. 2018a. High-energy electron experiments (HEP) aboard the ERG (Arase) satellite. Earth Planet Space 70: 77. https://doi.org/10.1186/s40623-018-0853-1. [CrossRef] [Google Scholar]
- Mitani T, Hori T, Park I, Takashima T, Miyoshi Y, Shinohara I. 2018b. Updated daily, The HEP instrument Level-2 omni-directional flux data of Exploration of energization and Radiation in Geospace (ERG) Arase satellite, Version v03.01. ERG Science Center, Institute for Space-Earth Environmental Research, Nagoya University. https://doi.org/10.34515/DATA.ERG-01001; Accessed 2021-01-01. [Google Scholar]
- Miyoshi Y, Kataoka R, Kasahara Y, Kumamoto A, Nagai T, Thomsen M. 2013. High-speed solar wind with southward interplanetary magnetic field causes relativistic electron flux enhancement of the outer radiation belt via enhanced condition of whistler waves. Geophys Res Lett 40(17): 4520–4525. https://doi.org/10.1002/grl.50916. [CrossRef] [Google Scholar]
- Miyoshi Y, Oyama S, Saito S, Kurita S, Fujiwara H, Kataoka R, Ebihara Y, Kletzing C, et al. 2015. Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probe observations. J Geophys Res Space Phys 120: 2754–2766. https://doi.org/10.1002/2014JA020690. [CrossRef] [Google Scholar]
- Miyoshi Y, Shinohara I, Takashima T, Kazushi A, Nana Higashio T, et al. 2018a. Geospace exploration project ERG. Earth Planet Space 70: 101. https://doi.org/10.1186/s40623-018-0862-0. [CrossRef] [Google Scholar]
- Miyoshi Y, Hori T, Shoji M, Teramoto M, Chang T-F, et al. 2018b. The ERG Science Center. Earth, Planets, Space 70: 96. https://doi.org/10.1186/s40623-018-0867-8. [CrossRef] [Google Scholar]
- Miyoshi Y, Shinohara I, Jun C-W. 2018c. Updated daily, The Level-2 orbit data of Exploration of energization and Radiation in Geospace (ERG) Arase satellite, Version v03. ERG Science Center, Institute for Space-Earth Environmental Research, Nagoya University. https://doi.org/10.34515/DATA.ERG-12000; Accessed 2021-01-01. [Google Scholar]
- Miyoshi Y, Hosokawa K, Kurita S, Oyama S-I, Ogawa Y, et al. 2021. Penetration of MeV electrons into the mesosphere accompanying pulsating aurorae. Sci Rep 11: 13724. https://doi.org/10.1038/s41598-021-92611-3. [CrossRef] [Google Scholar]
- Nishimura Y, Lessard M, Katoh Y, Miyoshi Y, Grono E, et al. 2020. Diffuse and pulsating aurora. Space Sci Rev 216: 4. https://doi.org/10.1007/s11214-019-0629-3. [CrossRef] [Google Scholar]
- Nishiyama T, Sato K, Nakamura T, Tsutsumi M, Sato T, Kohma M, Nishimura K, Tomikawa Y, Ejiri MK, Tsuda TT. 2015. Height and time characteristics of seasonal and diurnal variations in PMWE based on 1 year observations by the PANSY radar (69.0°S, 39.6°E). Geophys Res Lett 42: 2100–2108. https://doi.org/10.1002/2015GL063349. [CrossRef] [Google Scholar]
- Nishiyama T, Sato K, Nakamura T, Tsutsumi M, Sato T, Tanaka Y-M, Nishimura K, Tomikawa Y, Kohma M. 2018. Simultaneous observations of polar mesosphere winter echoes and cosmic noise absorptions in a common volume by the PANSY radar (69.0°S, 39.6°E). J Geophys Res (Space Phys) 123: 5019–5032. https://doi.org/10.1029/2017JA024717. [CrossRef] [Google Scholar]
- Oyama S, Kero A, Rodger CJ, Clilverd MA, Miyoshi Y, Partamies N, Turunen E, Raita T, Verronen PT, Saito S. 2017. Energetic electron precipitation and auroral morphology at the substorm recovery phase. J Geophys Res (Space Phys) 122: 6508–6527. https://doi.org/10.1002/2016JA023484. [CrossRef] [Google Scholar]
- Pesnell WD, Goldberg RA, Jackman CH, Chenette DL, Gaines EE. 1992. A search of UARS data for ozone depletions caused by the highly relativistic electron precipitation events of May 1992. J Geophys Res 104: A1. https://doi.org/10.1029/1998JA900030. [Google Scholar]
- Picone JM, Hedin AE, Drob DP, Aikin AC. 2002. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J Geophys Res 107(A12): 1468. https://doi.org/10.1029/2002JA009430. [Google Scholar]
- Pytte T, Trefall H, Kremser G, Jalonen L, Riedler W. 1976. On the morphology of energetic (≥30 keV) electron precipitation during the growth phase of magnetospheric substorms. J Atmos Sol-Terr Phys 38(7): 739–755. https://doi.org/10.1016/0021-9169(76)90112-4. [CrossRef] [Google Scholar]
- Ranta H, Ranta A. 1981. Development of the auroral absorption substorm: Studies of pre-onset phase and sharp onset using an extensive riometer network. Planet Space Sci 29: 1287–1313. https://doi.org/10.1016/0032-0633(81)90095-7. [CrossRef] [Google Scholar]
- Rossberg L. 1976. Prebay electron precipitation as seen by balloons and satellites. J Geophys Res 81(19): 3437–3440. https://doi.org/10.1029/JA081i019p03437. [CrossRef] [Google Scholar]
- Sato K, Tsutsumi M, Sato T, Nakamura T, Saito A, Tomikawa Y, Nishimura K, Kohma M, Yamagishi H, Yamanouchi T. 2014. Program of the Antarctic Syowa MST/IS radar (PANSY). J Atmos Sol Terr Phys 118(Part A): 2–15. https://doi.org/10.1016/j.jastp.2013.08.022. [CrossRef] [Google Scholar]
- Sato T, Iwamoto Y, Hashimoto S, Ogawa T, Furuta T, et al. 2018. Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02. J Nucl Sci Technol 55: 684–690. https://doi.org/10.1080/00223131.2017.1419890. [CrossRef] [Google Scholar]
- Seppälä A, Clilverd MA, Beharrell MJ, Rodger CJ, Verronen PT, Andersson ME, Newnham DA. 2015. Substorm-induced energetic electron precipitation: Impact on atmospheric chemistry. Geophys Res Lett 42: 8172–8176. https://doi.org/10.1002/2015GL065523. [CrossRef] [Google Scholar]
- Sergeev VA, Sazhina EM, Tsyganenko NA, Lundblad JA, Soraas F. 1983. Pitch-angle scattering of energetic protons in the magnetotail current sheet as the dominant sources of their isotropic precipitation into the nightside ionosphere. Planet Space Sci 31: 1147–1155. https://doi.org/10.1016/0032-0633(83)90103-4. [CrossRef] [Google Scholar]
- Sergeev V, Nishimura Y, Kubyshkina M, Angelopoulos V, Nakamura R, Singer H. 2012. Magnetospheric location of the equatorward prebreakup arc. J Geophys Res 117: A01212. https://doi.org/10.1029/2011JA017154. [Google Scholar]
- Shepherd SG. 2014. Altitude-adjusted corrected geomagnetic coordinates: Definition and functional approximations. J Geophys Res (Space Phys) 119: 7501–7521. https://doi.org/10.1002/2014JA020264. [CrossRef] [Google Scholar]
- Sivadas N, Semeter J, Nishimura Y, Kero A. 2017. Simultaneous measurements of substorm-related electron energization in the ionosphere and the plasma sheet. J Geophys Res (Space Phys) 122: 10528–10547. https://doi.org/10.1002/2017JA023995. [Google Scholar]
- Sivadas N, Semeter J, Nishimura YT, Mrak S. 2019. Optical signatures of the outer radiation belt boundary. Geophys Res Lett 46: 8588–8596. https://doi.org/10.1029/2019GL083908. [CrossRef] [Google Scholar]
- Tanaka T. 2015. Substorm auroral dynamics reproduced by advanced global magnetosphere–ionosphere (M–I) coupling simulation. In: Auroral dynamics and space weather, Geophys Monogr Ser. vol 215, Zhang Y, (Ed.) AGU, Washington, DC. pp. 177–190. https://doi.org/10.1002/9781118978719.ch13. [CrossRef] [Google Scholar]
- Tanaka YM, Nishiyama T, Kadokura A, Ozaki M, Miyoshi Y, et al. 2019. Direct comparison between magnetospheric plasma waves and polar mesosphere winter echoes in both hemispheres. J Geophys Res 124(11): 9626–9639. https://doi.org/10.1029/2019JA026891. [CrossRef] [Google Scholar]
- Tesema F, Partamies N, Nesse Tyssøy H, McKay D. 2020. Observations of precipitation energies during different types of pulsating aurora. Ann Geophys 38: 1191–1202. https://doi.org/10.5194/angeo-38-1191-2020. [CrossRef] [Google Scholar]
- Tsyganenko NA. 1996. Effect of the solar wind conditions on the global magnetospheric configuration as deduced from data-based field models (European Space Agency SP-389). European Space Agency Publication, Paris. 181 p. [Google Scholar]
- Uchida HA, Kataoka R, Kadokura A, Murase K, Yukimatu AS, et al. 2020. Asymmetric development of auroral surges in the northern and southern hemispheres. Geophys Res Lett 47(13): e2020GL088750. https://doi.org/10.1029/2020GL088750. [CrossRef] [Google Scholar]
- van de Kamp M, Rodger CJ, Seppälä A, Clilverd MA, Verronen PT. 2018. An updated model providing long-term data sets of energetic electron precipitation, including zonal dependence. J Geophys Res (Atmos) 123: 9891–9915. https://doi.org/10.1029/2017JD028253. [CrossRef] [Google Scholar]
- Yamamoto M, Tsuda T, Kato S, Sato T, Fukao S. 1987. A saturated inertia gravity wave in the mesosphere observed by the middle and upper atmosphere radar. J Geophys Res 92: 11993–11999. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.