Open Access
Issue |
J. Space Weather Space Clim.
Volume 12, 2022
|
|
---|---|---|
Article Number | 19 | |
Number of page(s) | 23 | |
DOI | https://doi.org/10.1051/swsc/2022015 | |
Published online | 14 June 2022 |
- Aarts A, Anderson J, Anderson C, Attridge P, Attwood A, et al. 2015. Estimating the reproducibility of psychological science. Science 349(6251): aac4716. Open Science Colaboration, https://doi.org/10.1126/science.aac4716. [CrossRef] [Google Scholar]
- Ball WT, Krivova NA, Unruh YC, Haigh JD, Solanki SK. 2014. A new SATIRE-S spectral solar irradiance reconstruction for solar cycles 21–23 and its implications for stratospheric ozone. J Atmos Sci 71(11): 4086–4101. https://doi.org/10.1175/JAS-D-13-0241.1. [CrossRef] [Google Scholar]
- Ball WT, Unruh YC, Krivova NA, Solanki S, Harder JW. 2011. Solar irradiance variability: A six-year comparison between SORCE observations and the SATIRE model. Astron Astrophys 530: A71. https://doi.org/10.1051/0004-6361/201016189. [CrossRef] [EDP Sciences] [Google Scholar]
- Bottou L. 2012. Stochastic gradient descent tricks. In: Neural Networks: Tricks of the Trade. Montavon G, Orr GB, Müller KR (Eds.) Springer, Berlin, Heidelberg, pp. 421–436. https://doi.org/10.1007/978-3-642-35289-8_25. [CrossRef] [Google Scholar]
- Chauvin Y, Rumelhart DE. 1995. Backpropagation: theory, architectures, and applications. Psychology Press. ISBN 0805812598, 9780805812596. [Google Scholar]
- Cho K, van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. 2014. Learning phrase representations using RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics, Doha, Qatar, pp. 1724–1734. https://doi.org/10.3115/v1/D14-1179. [CrossRef] [Google Scholar]
- DeLand MT, Kopp G, Considine DB. 2019. Overview of the NASA Solar Irradiance Science Team (SIST) program special section. Earth Space Sci 6(12): 2229–2231. https://doi.org/10.1029/2019EA000773. [CrossRef] [Google Scholar]
- Ermolli I, Matthes K, Dudok de Wit T, Krivova NA, Tourpali K, et al. 2013. Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos Chem Phys 13(8): 3945–3977. https://doi.org/10.5194/ACP-13-3945-2013. [CrossRef] [Google Scholar]
- Fidler F, Wilcox J. 2021. Reproducibility of scientific results. In: The Stanford Encyclopedia of Philosophy. Zalta EN (Ed.) Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/sum2021/entries/scientific-reproducibility/. [Google Scholar]
- Fligge M, Solanki S, Unruh Y, Fröhlich C, Wehrli C. 1998. A model of solar total and spectral irradiance variations. Astron Astrophys 335: 709–718. [Google Scholar]
- Fontenla J, Harder J, Livingston W, Snow M, Woods T. 2011. High-resolution solar spectral irradiance from extreme ultraviolet to far infrared. J Geophys Res Atmos 116(D20): 1–31. https://doi.org/10.1029/2011JD016032. [CrossRef] [Google Scholar]
- Fröhlich C, Andersen BN, Appourchaux T, Berthomieu G, Crommelynck DA, et al. 1997. First results from VIRGO, the experiment for helioseismology and solar irradiance monitoring on SOHO. The First Results from SOHO. Springer, pp. 1–25. https://doi.org/10.1007/978-94-011-5236-5_1. [Google Scholar]
- Goodfellow I, Bengio Y, Courville A. 2016. Deep Learning. MIT Press. ISBN 0262337371, 9780262337373. http://www.deeplearningbook.org. [Google Scholar]
- Gray LJ, Beer J, Geller M, Haigh JD, Lockwood M, et al. 2010. Solar influences on climate. Rev Geophys 48(4): 1–53. https://doi.org/10.1029/2009RG000282. [Google Scholar]
- Gulli A, Pal S. 2017. Deep learning with Keras. Packt Publishing Ltd. ISBN 9781787128422. [Google Scholar]
- Haigh JD. 2007. The Sun and the Earth’s climate. Living Rev Sol Phys 4(1): 1–64. https://doi.org/10.12942/lrsp-2007-2. [CrossRef] [Google Scholar]
- Herrera VV, Mendoza B, Herrera GV. 2015. Reconstruction and prediction of the total solar irradiance: From the Medieval Warm Period to the 21st century. New Astron 34: 221–233. https://doi.org/10.1016/j.newast.2014.07.009. [CrossRef] [Google Scholar]
- Hickey JR, Alton BM, Kyle HL, Hoyt D. 1988. Total solar irradiance measurements by ERB/Nimbus-7. A review of nine years. Space Sci Rev 48(3): 321–334. https://doi.org/10.1007/BF00226011. [CrossRef] [Google Scholar]
- Hochreiter S. 1998. The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int J Uncertain Fuzziness Knowlege-Based Syst 6(02): 107–116. https://doi.org/10.1142/S0218488598000094. [CrossRef] [Google Scholar]
- Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Comput 9(8): 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735. [Google Scholar]
- Jozefowicz R, Zaremba W, Sutskever I. 2015. An empirical exploration of recurrent network architectures. In: Proceedings of the 32nd International Conference on Machine Learning, vol. 37 of Proceedings of Machine Learning Research. Bach F, Blei D, (Eds.). PMLR, Lille, France, pp. 2342–2350. https://proceedings.mlr.press/v37/jozefowicz15.html. [Google Scholar]
- Kingma DP, Ba J. 2017. Adam: a method for stochastic optimization. In: 3rd International Conference for Learning Representations, San Diego, 2015. https://doi.org/10.48550/arXiv.1412.6980. [Google Scholar]
- Kopp G. 2016. Magnitudes and timescales of total solar irradiance variability. J Space Weather Space Clim 6: A30. https://doi.org/10.1051/swsc/2016025. [CrossRef] [EDP Sciences] [Google Scholar]
- Kren AC, Pilewskie P, Coddington O. 2017. Where does Earth’s atmosphere get its energy? J Space Weather Space Clim 7: A10. https://doi.org/10.1051/swsc/2017007. [CrossRef] [EDP Sciences] [Google Scholar]
- Krivova N, Vieira L, Solanki S. 2010. Reconstruction of solar spectral irradiance since the Maunder minimum. J Geophys Res Space Phys 115 (A12): 1–11. https://doi.org/10.1029/2010JA015431. [Google Scholar]
- Li Q, Brown JB, Huang H, Bickel PJ, et al. 2011. Measuring reproducibility of high-throughput experiments. Ann Appl Stat 5(3): 1752–1779. https://doi.org/10.1214/11-AOAS466. [Google Scholar]
- Matthes K, Funke B, Andersson ME, Barnard L, Beer J, et al. 2017. Solar forcing for CMIP6 (v3. 2). Geosci Model Dev 10(6): 2247–2302. https://doi.org/10.5194/gmd-10-2247-2017. [CrossRef] [Google Scholar]
- McNutt M. 2014. Reproducibility. Science 343 (6168): 229. https://doi.org/10.1126/science.1250475. [CrossRef] [Google Scholar]
- Muralikrishna A, Vieira LE, dos Santos RD, Almeida AP. 2020. Total solar irradiance forecasting with keras recurrent neural networks. In: International Conference on Computational Science and Its Applications. Springer, pp. 255–269. https://doi.org/10.1007/978-3-030-58814-4_18. [Google Scholar]
- Nogueira P, Souza J, Abdu MA, Paes R, Sousasantos J, et al. 2015. Modeling the equatorial and low-latitude ionospheric response to an intense X-class solar flare. J Geophys Res Space Phys 120(4): 3021–3032. https://doi.org/10.1002/2014JA020823. [CrossRef] [Google Scholar]
- Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, et al. 2011. Scikit-learn: Machine learning in Python. J Mach Learn Res 12: 2825–2830. https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf. [Google Scholar]
- Pinheiro CAO, Senna VD. 2017. Multivariate analysis and neural networks application to price forecasting in the Brazilian agricultural market. Ciência Rural 47(1):1–7. https://doi.org/10.1590/0103-8478cr20160077. [Google Scholar]
- Raulin J, Trottet G, Kretzschmar M, Macotela EL, Pacini A, Bertoni FCP, Dammasch IE. 2013. Response of the low ionosphere to X-ray and Lyman-α solar flare emissions. J Geophys Res Space Phys 118(1): 570–575. https://doi.org/10.1029/2012JA017916. [CrossRef] [Google Scholar]
- Rottman GJ, Woods TN, Sparn TP. 1993. Solar-stellar irradiance comparison experiment 1: 1. Instrument design and operation. J Geophys Res Atmos 98(D6): 10667–10677. https://doi.org/10.1029/93JD00462. [CrossRef] [Google Scholar]
- Rougier NP, Hinsen K, Alexandre F, Arildsen T, Barba LA, et al. 2017. Sustainable computational science: the ReScience initiative. PeerJ Comput Sci 3: e142. https://doi.org/10.7717/peerj-cs.142. [CrossRef] [Google Scholar]
- Solanki SK, Krivova NA, Haigh JD. 2013. Solar irradiance variability and climate. Annu Rev Astron Astrophys 51: 311–351. https://doi.org/10.1146/annurev-astro-082812-141007. [CrossRef] [Google Scholar]
- Stein RF. 2012. Solar surface magneto-convection. Living Rev Sol Phys 9(1): 1–51. https://doi.org/10.12942/lrsp-2012-4. [CrossRef] [Google Scholar]
- Steinhilber F, Beer J, Fröhlich C. 2009. Total solar irradiance during the Holocene. Geophys Res Lett 36(19): 1–5. https://doi.org/10.1029/2009GL040142. [CrossRef] [Google Scholar]
- Tobiska WK, Bouwer SD. 2006. New developments in SOLAR2000 for space research and operations. Adv Space Res 37(2): 347–358. https://doi.org/10.1016/j.asr.2005.08.015. [CrossRef] [Google Scholar]
- Tobiska WK, Woods T, Eparvier F, Viereck R, Floyd L, Bouwer D, Rottman G, White O. 2000. The SOLAR2000 empirical solar irradiance model and forecast tool. J Atmos Sol Terr Phys 62(14): 1233–1250. https://doi.org/10.1016/S1364-6826(00)00070-5. [CrossRef] [Google Scholar]
- Vieira LEA, de Wit TD, Kretzschmar M. 2011a. Short-term forecast of the total and spectral solar irradiance. arXiv. https://doi.org/10.48550/arxiv.1111.5308. https://arxiv.org/abs/1111.5308. [Google Scholar]
- Vieira LEA, Solanki SK, Krivova NA, Usoskin I. 2011b. Evolution of the solar irradiance during the Holocene. Astron Astrophys 531: A6. https://doi.org/10.1051/0004-6361/201015843. [CrossRef] [EDP Sciences] [Google Scholar]
- Willson RC, Gulkis S, Janssen M, Hudson H, Chapman G. 1981. Observations of solar irradiance variability. Science 211(4483): 700–702. https://doi.org/10.1126/science.211.4483.700. [CrossRef] [Google Scholar]
- Wu C-J, Krivova NA, Solanki SK, Usoskin I. 2018. Solar total and spectral irradiance reconstruction over the last 9000 years. Astron Astrophys 620: A120. https://doi.org/10.1051/0004-6361/201832956. [CrossRef] [EDP Sciences] [Google Scholar]
- Yeo K, Krivova N, Solanki S. 2017. EMPIRE: A robust empirical reconstruction of solar irradiance variability. J Geophys Res Space Phys 122(4): 3888–3914. https://doi.org/10.1002/2016JA023733. [CrossRef] [Google Scholar]
- Yeo K, Krivova N, Solanki S, Glassmeier K. 2014. Reconstruction of total and spectral solar irradiance from 1974 to 2013 based on KPVT, SoHO/MDI, and SDO/HMI observations. Astron Astrophys 570: A85. https://doi.org/10.1051/0004-6361/201423628. [CrossRef] [EDP Sciences] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.