Open Access
Issue |
J. Space Weather Space Clim.
Volume 12, 2022
|
|
---|---|---|
Article Number | 3 | |
Number of page(s) | 10 | |
Section | Agora | |
DOI | https://doi.org/10.1051/swsc/2021046 | |
Published online | 26 January 2022 |
- Alberti T, Consolini G, De Michelis P, Laurenza M, Marcucci MF. 2018. On fast and slow Earth’s magnetospheric dynamics during geomagnetic storms: a stochastic Langevin approach. J Space Weather Space Clim 8: A56. http://doi.org/10.1051/swsc/2018039 [CrossRef] [EDP Sciences] [Google Scholar]
- Berrilli F. 2020. Angelo Secchi e la nascita della meteorologia spaziale moderna. Quaderni di Storia della Fisica, Italian Physical Society 1: 33–51. https://doi.org/10.1393/qsf/i2020-10073-6. [Google Scholar]
- Berrilli F, Casolino M, Del Moro D, Di Fino L, Larosa M, et al. 2014. The relativistic solar particle event of May 17th, 2012 observed on board the International Space Station. J Space Weather Space Clim 4: A16. https://doi.org/10.1051/swsc/2014014. [CrossRef] [EDP Sciences] [Google Scholar]
- Bigazzi A, Cauli C, Berrilli F. 2020. Lower-thermosphere response to solar activity: an empirical-mode-decomposition analysis of GOCE 2009–2012 data. Ann Geophys 38(3): 789–800. https://doi.org/10.5194/angeo-38-789-2020. [CrossRef] [Google Scholar]
- Boteler DH. 2006. The super storms of August/September 1859 and their effects on the telegraph system. Adv Space Res 38(2): 159–172. https://doi.org/10.1016/j.asr.2006.01.013. [CrossRef] [Google Scholar]
- Brenni P. 1993. Il Meteorografo di Padre Angelo Secchi. Nuncius 8(1): 197–247. https://doi.org/10.1163/182539183X00082. [CrossRef] [Google Scholar]
- Cade WB, Chan-Park C. 2015. The origin of “Space Weather”. Space Weather 13(2): 99–103. https://doi.org/10.1002/2014SW001141. [CrossRef] [Google Scholar]
- Carrasco VMS, Nogales JM, Vaquero JM, Chatzistergos T, Ermolli I. 2021. A note on the sunspot and prominence records made by Angelo Secchi during the period 1871–1875. J Space Weather Space Clim 11: 51. https://doi.org/10.1051/swsc/2021033. [CrossRef] [EDP Sciences] [Google Scholar]
- Chinnici I. 2017. The maker and the scientist: The Merz-Secchi connection. In: Merz Telescopes: Historical & cultural astronomy. Chinnici I (Ed.), Springer, Cham. pp. 39–68. https://doi.org/10.1007/978-3-319-41486-7_3 [CrossRef] [Google Scholar]
- Chinnici I, Consolmagno G. 2021. Angelo Secchi and nineteenth century science. The multidisciplinary contributions of a pioneer and innovator. Springer, Cham. https://doi.org/10.1007/978-3-030-58384-2. [CrossRef] [Google Scholar]
- Di Fino L, Zaconte V, Stangalini M, Sparvoli R, Picozza P, et al. 2014. Solar particle event detected by ALTEA on board the International Space Station. The March 7th, 2012 X5.4 flare. J Space Weather Space Clim 4: A19. https://doi.org/10.1051/swsc/2014015. [CrossRef] [EDP Sciences] [Google Scholar]
- Dortous de Mairan J-J. 1731. Traité physique et historique de l’aurore boréale. Mémoires de l’Académie Royale des Sciences. A Paris del l’Imprimerie Royale. [Google Scholar]
- Egidi G. 1872. Studii sull’aurora elettrica del 4 febbraio 1872. https://drive.google.com/file/d/1Sc1d2CrDvEcgJd_FIn2OPBazSpjLNU5w/view?usp=sharing. [Google Scholar]
- Fawcett T. 1872. The aurora of February 4. Nature 5(120): 302. https://doi.org/10.1038/005302c0. [CrossRef] [Google Scholar]
- Hayakawa H, Ebihara Y, Willis DM, Hattori K, Giunta AS, et al. 2018. The great space weather event during 1872 February recorded in East Asia. Astrophys J 862(1): 15. https://doi.org/10.3847/1538-4357/aaca40. [CrossRef] [Google Scholar]
- Hayakawa H, Ebihara Y, Willis DM, Toriumi S, Iju T, et al. 2019. Temporal and spatial evolutions of a large sunspot group and great auroral storms around the carrington event in 1859. Space Weather 17(11): 1553–1569. https://doi.org/10.1029/2019SW002269. [CrossRef] [Google Scholar]
- J. M. H. 1872. The aurora of February 4. Nature 5(123): 365. https://doi.org/10.1038/005365a0. [Google Scholar]
- Jones AV. 1971. Auroral spectroscopy. Space Sci Rev 11(6): 776–826. https://doi.org/10.1007/BF00216890. [CrossRef] [Google Scholar]
- Lanchester BS, Ashrafi M, Ivchenko N. 2009. Simultaneous imaging of aurora on small scale in OI (777.4 nm) and N21P to estimate energy and flux of precipitation. Ann Geophys 27(7): 2881–2891. https://doi.org/10.5194/angeo-27-2881-2009. [CrossRef] [Google Scholar]
- Lilensten J, Belehaki A. 2009. Developing the scientific basis for monitoring, modelling and predicting space weather. Acta Geophys 57(1): 1–14. https://doi.org/10.2478/s11600-008-0081-3. [Google Scholar]
- Oliveira DM, Hayakawa H, Bhaskar A, Zesta E, Vichare G. 2020. A possible case of sporadic aurora observed at Rio de Janeiro. Earth Planets Space 72(1): 82. https://doi.org/10.1186/s40623-020-01208-z. [CrossRef] [Google Scholar]
- Orchiston W. 2020. Book review: Decoding the stars: A biography of Angelo Secchi, jesuit and scientist. J Astron Hist Herit 23(1): 227–228. [Google Scholar]
- Plainaki C, Antonucci M, Bemporad A, Berrilli F, Bertucci B, et al. 2020. Current state and perspectives of space weather science in Italy. J Space Weather Space Clim 10: 6. https://doi.org/10.1051/swsc/2020003. [CrossRef] [EDP Sciences] [Google Scholar]
- Plainaki C, Lilensten J, Radioti A, Andriopoulou M, Milillo A, et al. 2016. Planetary space weather: Scientific aspects and future perspectives. J Space Weather Space Clim 6: A31. https://doi.org/10.1051/swsc/2016024. [CrossRef] [EDP Sciences] [Google Scholar]
- Preece WH. 1872. Earth-currents and the aurora borealis of February 4, 1872. Nature 5(123): 368. https://doi.org/10.1038/005368a0. [CrossRef] [Google Scholar]
- Ptitsyna N, Altamore A. 2012. Father Secchi and the first Italian magnetic observatory. Hist Geo- Space Sci 3(1): 33–45. https://doi.org/10.5194/hgss-3-33-2012. [CrossRef] [Google Scholar]
- Rigge WF. 1918. Father Angelo Secchi. Popular Astronomy 26: 589–598. [Google Scholar]
- Schwartz M, Hayes J. 2008. A history of transatlantic cables. IEEE Commun Mag 46(9): 42–48. https://doi.org/10.1109/MCOM.2008.4623705. [CrossRef] [Google Scholar]
- Schwenn R. 2006. Space weather: The solar perspectives. Living Rev Sol Phys 3: 2. https://doi.org/10.12942/lrsp-2006-2. [CrossRef] [Google Scholar]
- Secchi A. 1872. Sull’aurora elettrica del 4 febbraio 1872. https://drive.google.com/file/d/1qAVSQcxld7Pzv4I4d24Gv7H7oU1wqHH4/view?usp=sharing. [Google Scholar]
- Secchi A. 1873. Sulla distribuzione delle protuberanze solari e loro relazione colle macchie coll’ aggiunta di un riassunto de’ labori spettroscopici fatti in questi ultimi anni all’ osservatorio del Collegio romano. Tipografia delle Scienze Matematiche e Fisiche, Roma. [Google Scholar]
- Secchi A. 1875. Le Soleil. https://doi.org/10.3931/e-rara-14748. [Google Scholar]
- Secchi A. 1877. L’astronomia in Roma nel pontificato di Pio IX. Tipografia della Pace. [Google Scholar]
- Silverman SM. 2006. Comparison of the aurora of September 1/2, 1859 with other great auroras. Adv Space Res 38(2): 136–144. https://doi.org/10.1016/j.asr.2005.03.157. [CrossRef] [Google Scholar]
- Silverman SM. 2008. Low-latitude auroras: The great aurora of 4 February 1872. J Atmos Sol-Terr Phys 70(10): 1301–1308. https://doi.org/10.1016/j.jastp.2008.03.012. [CrossRef] [Google Scholar]
- Silverman SM, Cliver EW. 2001. Low-latitude auroras: the magnetic storm of 14–15 May 1921. J Atmos Sol-Terr Phys 63(5): 523–535. https://doi.org/10.1016/S1364-6826(00)00174-7. [CrossRef] [Google Scholar]
- Slatter J. 1872. Aurora of Feb. 4, 1872. Mon Notices Royal Astron Soc 32: 317. https://doi.org/10.1093/mnras/32.8.317. [CrossRef] [Google Scholar]
- Spogli L, Piersanti M, Cesaroni C, Materassi M, Cicone A, Alfonsi L, Romano V, Ezquer RG. 2019. Role of the external drivers in the occurrence of low-latitude ionospheric scintillation revealed by multi-scale analysis. J Space Weather Space Clim 9: A35. https://doi.org/10.1051/swsc/2019032. [CrossRef] [EDP Sciences] [Google Scholar]
- Stone EJ. 1872. The aurora of February 4. Nature 5(127): 443. https://doi.org/10.1038/005443b0. [CrossRef] [Google Scholar]
- Toynbee CH. 1873. Extract from log (2933) of ship Cottica, Captain D. F. M’Kechnie, containing a notice of the occurrence of corposants during the Aurora of February 4, 1872. Quart J Roy Meteorol Soc 1(3): 96–96. https://doi.org/10.1002/qj.4970010308. [CrossRef] [Google Scholar]
- Valach F, Hejda P, Revallo M, Bochnček J. 2019. Possible role of auroral oval-related currents in two intense magnetic storms recorded by old mid-latitude observatories Clementinum and Greenwich. J Space Weather Space Clim 9: A11. https://doi.org/10.1051/swsc/2019008. [CrossRef] [EDP Sciences] [Google Scholar]
- Ward W, Seppälä A, Yiğit E, Nakamura T, Stolle C, et al. 2021. Role Of the Sun and the Middle atmosphere/thermosphere/ionosphere In Climate (ROSMIC): a retrospective and prospective view. Prog Earth Planet Sci 8(1): 47. https://doi.org/10.1186/s40645-021-00433-8. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.