Open Access
Issue |
J. Space Weather Space Clim.
Volume 12, 2022
Topical Issue - Space Weather Instrumentation
|
|
---|---|---|
Article Number | 2 | |
Number of page(s) | 21 | |
DOI | https://doi.org/10.1051/swsc/2021025 | |
Published online | 26 January 2022 |
- Adams CS, Hughes IG. 2019. Optics f2f – from Fourier to Fresnel. Oxford University Press, Oxford, UK. [Google Scholar]
- Agnelli G, Cacciani A, Fofi M. 1975. The magneto-optical filter. I: Premilinary observations in Na D lines. Sol Phys 44(2): 509–518. https://doi.org/10.1007/BF00153229. [CrossRef] [Google Scholar]
- Agnelli G, Cacciani A, Fofi M. 1976. Errata: “The magneto-optical filter. I: Preliminary observations in Na D lines” [Sol. Phys., Vol. 44, p. 509–518 (1975)]. Sol Phys 46: 272. https://doi.org/10.1007/BF00157574. [CrossRef] [Google Scholar]
- Anastasiadis A, Papaioannou A, Sandberg I, Georgoulis M, Tziotziou K, Kouloumvakos A, Jiggens P. 2017. Predicting flares and solar energetic particle events: The FORSPEF tool. Sol Phys 292(9): 134. https://doi.org/10.1007/s11207-017-1163-7. [Google Scholar]
- Avrett EH, Fontenla JM, Loeser R. 1994. Formation of the Solar 10830 Angstrom Line. In: Infrared solar physics, Rabin DM, Jefferies JT, Lindsey C (Eds.), Vol. 154, p. 35. [CrossRef] [Google Scholar]
- Baranyi T, Győri L, Ludmány A. 2016. On-line tools for solar data compiled at the Debrecen observatory and their extensions with the Greenwich sunspot data. Sol Phys 291: 3081–3102. https://doi.org/10.1007/s11207-016-0930-1. [CrossRef] [Google Scholar]
- Barnes G, Leka KD, Schrijver CJ, Colak T, Qahwaji R, et al. 2016. A comparison of flare forecasting methods. I. Results from the all-clear workshop. Astrophys J 829: 89. https://doi.org/10.3847/0004-637X/829/2/89. [CrossRef] [Google Scholar]
- Beckers JM. 1970. Narrow band filters based on magnetooptical effects. Appl Opt 9(3): 595. https://doi.org/10.1364/AO.9.000595. [CrossRef] [Google Scholar]
- Beckers JM. 1971. The measurement of solar magnetic fields. In: Solar magnetic fields, Howard R (Ed.). Vol. 43 of IAU Symposium, p. 3. [CrossRef] [Google Scholar]
- Beckers JM, Wagner WJ. 1970. A photographic polarimeter for solar observations. Appl Opt 9: 1933–1934. https://doi.org/10.1364/AO.9.001933. [CrossRef] [Google Scholar]
- Bloom SH, Searcy PA, Choi K, Kremer R, Korevaar E. 1993. Helicopter plume detection by using an ultranarrow-band noncoherent laser Doppler velocimeter. Opt Lett 18(3): 244–246. https://doi.org/10.1364/OL.18.000244. [CrossRef] [Google Scholar]
- Bobra MG, Couvidat S. 2015. Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm. Astrophys J 798(2): 135. https://doi.org/10.1088/0004-637X/798/2/135. [Google Scholar]
- Cacciani A, Fofi M. 1978. The magneto-optical filter. II. Velocity field measurements. Sol Phys 59(1): 179–189. https://doi.org/10.1007/BF00154941. [CrossRef] [Google Scholar]
- Cacciani A, Cimino M, Fofi M. 1971. A short report on the Magnetic Beam Absorption Filter Research at the Rome astronomical observatory. In: Solar magnetic fields, Howard R (Eds.), Vol. 43, p. 94. [CrossRef] [Google Scholar]
- Cacciani A, Moretti P-F. 1994. Magneto-optical filter: concept and applications in astronomy. In: Proc. SPIE, Crawford DL, Craine ER (Eds.), Vol. 2198 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pp. 219–228. https://doi.org/10.1117/12.176751. [CrossRef] [Google Scholar]
- Cacciani A, Ricci D, Rosati P, Rhodes EJ, Smith E, Tomczyk S, Ulrich RK. 1990. Solar magnetic fields measurements with a magneto-optical filter. Nuovo Cimento C Geophys Space Phys C 13: 125–130. https://doi.org/10.1007/BF02515781. [CrossRef] [Google Scholar]
- Cacciani A, Marmolino C, Moretti PF, Oliviero M, Severino G, Smaldone LA. 1997a. Simultaneous Doppler and magnetic solar maps from a MOF installed at the Osservatorio di Capodimonte. Mem Soc Astron Italiana 68: 467. [Google Scholar]
- Cacciani A, Moretti PF, Rodgers WE. 1997b. Measuring Doppler and Magnetic Fields Simultaneously. Sol Phys 174: 115–128. https://doi.org/10.1023/A:1004935524038. [CrossRef] [Google Scholar]
- Campi C, Benvenuto F, Massone AM, Bloomfield DS, Georgoulis MK, Piana M. 2019. Feature ranking of active region source properties in solar flare forecasting and the uncompromised stochasticity of flare occurrence. Astrophys J 883(2): 150. https://doi.org/10.3847/1538-4357/ab3c26. [Google Scholar]
- Camporeale E. 2019. The challenge of machine learning in space weather: Nowcasting and forecasting. Space Weather 17(8): 1166–1207. https://doi.org/10.1029/2018SW002061, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW002061. [Google Scholar]
- Chang P, Chen Y, Shang H, Guan X, Guo H, Chen J, Luo B. 2019. A Faraday laser operating on Cs 852 nm transition. Appl Phys B-Lasers Opt 125(12): Article ID 230. https://doi.org/10.1007/s00340-019-7342-5. [Google Scholar]
- Cimino M, Cacciani A, Sopranzi N. 1968. An instrument to measure solar magnetic fields by an atomic-beam method. Sol Phys 3(4): 618–622. https://doi.org/10.1007/BF00151943. [CrossRef] [Google Scholar]
- Cimino M, Cacciani A, Fofi M. 1970. Some developments of the magnetic beam absorption filter. Sol Phys 11(2): 319–333. https://doi.org/10.1007/BF00155231. [CrossRef] [Google Scholar]
- Cui Y, Li R, Zhang L, He Y, Wang H. 2006. Correlation between solar flare productivity and photospheric magnetic field properties. 1. Maximum horizontal gradient, length of neutral line, number of singular points. Sol Phys 237: 45–59. https://doi.org/10.1007/s11207-006-0077-6. [CrossRef] [Google Scholar]
- DeForest CE, Hagenaar HJ, Lamb DA, Parnell CE, Welsch BT. 2007. Solar magnetic tracking. I. Software comparison and recommended practices. Astrophys J 666: 576–587. https://doi.org/10.1086/518994. [CrossRef] [Google Scholar]
- Deng YY. 2011. Introduction to the Chinese Giant Solar Telescope. In: Astronomical Society of India Conference Series, Vol. 2 of Astronomical Society of India Conference Series, pp. 31–36. [Google Scholar]
- Dyer MJ, Dhillon VS, Littlefair S, Steeghs D, Ulaczyk K, Chote P, Galloway D, Rol E. 2018. A telescope control and scheduling system for the Gravitational-wave Optical Transient Observer (GOTO). In: Proceedings of the SPIE, Vol. 10704 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p. 107040C. https://doi.org/10.1117/12.2311865. [Google Scholar]
- Eastwood JP, Biffis E, Hapgood MA, Green L, Bisi MM, Bentley RD, Wicks R, McKinnell LA, Gibbs M, Burnett C. 2017. The economic impact of space weather: Where do we stand? Risk Anal 37(2): 206–218. https://doi.org/10.1111/risa.12765. [CrossRef] [Google Scholar]
- Finsterle W, Jefferies SM, Cacciani A, Rapex P, McIntosh SW. 2004a. Helioseismic mapping of the magnetic canopy in the solar chromosphere. Astrophys J Lett 613(2): L185–L188. https://doi.org/10.1086/424996. [CrossRef] [Google Scholar]
- Finsterle W, Jefferies SM, Cacciani AR, Rapex P, Giebink C, Knox A, Dimartino V. 2004b. Seismology of the solar atmosphere. Sol Phys 220(2): 317–331. https://doi.org/10.1023/B:SOLA.0000031397.73790.7b. [CrossRef] [Google Scholar]
- Florios K, Kontogiannis I, Park S-H, Guerra JA, Benvenuto F, Bloomfield DS, Georgoulis MK. 2018. Forecasting solar flares using magnetogram-based predictors and machine learning. Sol Phys 293(2): 28. https://doi.org/10.1007/s11207-018-1250-4. [Google Scholar]
- Forte R, Jefferies S, Pietropaolo E, Scardigli S, Giovannelli L, Del Moro D, Berrilli F. 2017. MOTH II calibration pipeline and data merging with SDO/HMI and SDO/AIA. In: SOLARNET IV: The physics of the sun from the interior to the outer atmosphere, p. 122. [Google Scholar]
- Forte R, Jefferies SM, Berrilli F, Del Moro D, Fleck B, Giovannelli L, Murphy N, Pietropaolo E, Rodgers W. 2018. The MOTH II Doppler-magnetographs and data calibration pipeline. In: Space weather of the heliosphere: Processes and forecasts, Vol. 335 of IAU Symposium, Foullon C, Malandraki OE (Eds.), pp. 335–339. https://doi.org/10.1017/S1743921318000029. [Google Scholar]
- Gary GA. 1989. Linear force-free magnetic fields for solar extrapolation and interpretation. Astrophys J Suppl Ser 69: 323–348. https://doi.org/10.1086/191316. [CrossRef] [Google Scholar]
- Georgoulis MK. 2013. Toward an efficient prediction of solar flares: Which parameters, and how? Entropy 15(11): 5022–5052. https://doi.org/10.3390/e15115022. [Google Scholar]
- Guevara Gómez JC, Martínez Oliveros JC, Calvo-Mozo B. 2017. First Colombian solar radio interferometer: Current stage. In: Fine structure and dynamics of the solar atmosphere, Vargas Domínguez S, Kosovichev AG, Antolin P, Harra L (Eds.), pp. 16–19. https://doi.org/10.1017/S1743921317000084. [Google Scholar]
- Haberreiter M, Finsterle W, Jefferies SM. 2007. On the observation of traveling acoustic waves in the solar atmosphere using a magneto-optical filter. Astronomische Nachrichten 328(3): 211. https://doi.org/10.1002/asna.200610721. [CrossRef] [Google Scholar]
- Hasan SS, Soltau D, Kärcher H, Süß M, Berkefeld T. 2010. NLST: India’s National Large Solar Telescope. Astron Nachr 331(6): 628. https://doi.org/10.1002/asna.201011389. [CrossRef] [Google Scholar]
- Huang W, Chu X, Wiig J, Tan B, Yamashita C, et al. 2009. Field demonstration of simultaneous wind and temperature measurements from 5 to 50 km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar. Opt Lett 34(10): 1552–1554. https://doi.org/10.1364/OL.34.001552. [CrossRef] [Google Scholar]
- Huang X, Wang H, Xu L, Liu J, Li R, Dai X. 2018. Deep learning based solar flare forecasting model. I. Results for line-of-sight magnetograms. Astrophys J 856(1): 7. https://doi.org/10.3847/1538-4357/aaae00. [CrossRef] [Google Scholar]
- Keaveney J, Hamlyn WJ, Adams CS, Hughes IG. 2016. A single-mode external cavity diode laser using an intra-cavity atomic Faraday filter with short-term linewidth <400 kHz and long-term stability of <1 MHz. Rev Sci Instrum 87(9): 095111. https://doi.org/10.1063/1.4963230. [CrossRef] [Google Scholar]
- Keaveney J, Wrathmall SA, Adams CS, Hughes IG. 2018. Optimized ultra-narrow atomic bandpass filters via magneto-optic rotation in an unconstrained geometry. Opt Lett 43(17): 4272. https://doi.org/10.1364/OL.43.004272. [CrossRef] [Google Scholar]
- Kim T, Park E, Lee H, Moon Y-J, Bae S-H, et al. 2019. Solar farside magnetograms from deep learning analysis of STEREO/EUVI data. Nat Astron 3: 397–400. https://doi.org/10.1038/s41550-019-0711-5. [CrossRef] [Google Scholar]
- Korsós MB, Ludmány A, Erdélyi R, Baranyi T. 2015. On flare predictability based on sunspot group evolution. Astrophys J Lett 802(2): L21. https://doi.org/10.1088/2041-8205/802/2/L21. [CrossRef] [Google Scholar]
- Korsós MB, Chatterjee P, Erdélyi R. 2018. Applying the weighted horizontal magnetic gradient method to a simulated flaring active region. Astrophys J 857: 103. https://doi.org/10.3847/1538-4357/aab891. [CrossRef] [Google Scholar]
- Korsós MB, Yang S, Erdélyi R. 2019. Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes. J Space Weather Space Clim 9: A6. https://doi.org/10.1051/swsc/2019002. [CrossRef] [EDP Sciences] [Google Scholar]
- Korsós MB, Georgoulis MK, Gyenge N, Bisoi SK, Yu S, Poedts S, Nelson CJ, Liu J, Yan Y, Erdélyi R. 2020a. Solar flare prediction using magnetic field diagnostics above the photosphere. Astrophys J 896(2): 119. https://doi.org/10.3847/1538-4357/ab8fa2. [CrossRef] [Google Scholar]
- Korsós MB, Romano P, Morgan H, Ye Y, Erdélyi R, Zuccarello F. 2020b. Differences in periodic magnetic helicity injection behavior between flaring and non-flaring active regions: Case study. Astrophys J Lett 897(2): L23. https://doi.org/10.3847/2041-8213/ab9d7a. [CrossRef] [Google Scholar]
- Kuridze D, Mathioudakis M, Christian DJ, Kowalski AF, Jess DB, Grant SDT, Kawate T, Simões PJA, Allred JC, Keenan FP. 2016. Observations and simulations of the Na I D1 line profiles in an M-class solar flare. Astrophys J 832(2): 147. https://doi.org/10.3847/0004-637X/832/2/147. [CrossRef] [Google Scholar]
- Leenaarts J, Golding T, Carlsson M, Libbrecht T, Joshi J. 2016. The cause of spatial structure in solar He I 1083 nm multiplet images. A&A 594: A104. https://doi.org/10.1051/0004-6361/201628490. [CrossRef] [EDP Sciences] [Google Scholar]
- Leka KD, Barnes G, Wagner E. 2018. The NWRA classification Infrastructure: Description and extension to the discriminant analysis flare forecasting system (DAFFS). J Space Weather Space Clim 8: A25. https://doi.org/10.1051/swsc/2018004. [CrossRef] [EDP Sciences] [Google Scholar]
- Leka KD, Park S-H, Kusano K, Andries J, Barnes G, et al. 2019a. A comparison of flare forecasting methods. II. Benchmarks, metrics, and performance results for operational solar flare forecasting systems. Astrophys J Suppl Ser 243(2): 36. https://doi.org/10.3847/1538-4365/ab2e12. [CrossRef] [Google Scholar]
- Leka KD, Park S-H, Kusano K, Andries J, Barnes G, et al. 2019b. A comparison of flare forecasting methods III systematic behaviors of operational solar flare forecasting systems. Astrophys J 881(2): 101. https://doi.org/10.3847/1538-4357/ab2e11. [CrossRef] [Google Scholar]
- Lide DR. 1995. CRC handbook of chemistry and physics: A ready-reference book of chemical and physical data. CRC Press, Boca Raton, FL. [Google Scholar]
- Liu Z, Xu J, Gu B-Z, Wang S, You J-Q, et al. 2014. New vacuum solar telescope and observations with high resolution. Res Astron Astrophys 14(6): 705–718. https://doi.org/10.1088/1674-4527/14/6/009. [CrossRef] [Google Scholar]
- Liu J, Ye Y, Shen C, Wang Y, Erdélyi R. 2018. A new tool for CME arrival time prediction using machine learning algorithms: CAT-PUMA. Astrophys J 855(2): 109. https://doi.org/10.3847/1538-4357/aaae69. [Google Scholar]
- Liu J, Wang Y, Huang X, Korsós MB, Jiang Y, Wang Y, Erdélyi R. 2021. Reliability of AI-generated magnetograms from only EUV images. Nat Astron 5: 108–110. https://doi.org/10.1038/s41550-021-01310-6. [CrossRef] [Google Scholar]
- Miao X, Yin L, Zhuang W, Luo B, Dang A, Chen J, Guo H. 2011. Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations. Rev Sci Instrum 82(8): 086106. https://doi.org/10.1063/1.3624696. [CrossRef] [Google Scholar]
- Moretti PF, Severino G, Cauzzi G, Reardon K, Straus T, Cacciani A, Marmolino C, Oliviero M, Smaldone LA. 1997. The magneto-optical filter in Napoli: Perspectives and test observations. In: Vol. 225 of Astrophysics and Space Science Library. https://doi.org/10.1007/978-94-011-5167-2-32. [Google Scholar]
- Moretti PF, Berrilli F, Bigazzi A, Jefferies SM, Murphy N, Roselli L, di Mauro MP. 2010. Future instrumentation for solar physics: A double channel MOF imager on board ASI Space Mission ADAHELI. Astrophys Space Sci 328(1–2): 313–318. https://doi.org/10.1007/s10509-009-0251-z. [CrossRef] [Google Scholar]
- Murphy N, Smith E, Rodgers W, Jefferies S. 2005. Chromospheric observations in the helium 1083 nm line – A new instrument. In: Solar Wind 11/SOHO 16, Connecting Sun and Heliosphere, Fleck B, Zurbuchen TH, Lacoste H (Eds.), Vol. 592 of ESA Special Publication, p. 511. [Google Scholar]
- Nishizuka N, Sugiura K, Kubo Y, Den M, Ishii M. 2018. Deep flare net (DeFN) model for solar flare prediction. Astrophys J 858(2): 113. https://doi.org/10.3847/1538-4357/aab9a7. [CrossRef] [Google Scholar]
- Oliviero M, Dolci M, Severino G, Straus T, Cacciani A, Moretti PF. 1998a. VAMOS: Velocity and magnetic observations of the Sun. In: New eyes to see inside the Sun and Stars, Deubner F-L, Christensen-Dalsgaard J, Kurtz D (Eds.), Vol. 185 of IAU Symposium, p. 53. [CrossRef] [Google Scholar]
- Oliviero M, Severino G, Straus T. 1998b. The VAMOS data analysis pipeline. In: Structure and dynamics of the interior of the Sun and Sun-like Stars. Korzennik S (Ed.), Vol. 418 of ESA Special Publication, p. 275. [Google Scholar]
- Oliviero M, Moretti PF, Severino G, Straus T, Magrì M, Tripicchio A. 2002. Preliminary results on the solar photospheric dynamics observed with Vamos. Sol Phys 209(1): 21–35. https://doi.org/10.1023/A:1020904204842. [CrossRef] [Google Scholar]
- Park E, Moon Y-J, Shin S, Yi K, Lim D, Lee H, Shin G. 2018. Application of the deep convolutional neural network to the forecast of solar flare occurrence using full-disk solar magnetograms. Astrophys J 869(2): 91. https://doi.org/10.3847/1538-4357/aaed40. [CrossRef] [Google Scholar]
- Pevtsov AA. 2017. Space weather forecasting and supporting research in the USA. Geomagn Aeron 57(7): 769–775. https://doi.org/10.1134/S0016793217070179. [CrossRef] [Google Scholar]
- Pötzi W, Veronig AM, Riegler G, Amerstorfer U, Pock T, Temmer M, Polanec W, Baumgartner DJ. 2015. Real-time flare detection in ground-based Hα imaging at Kanzelhöhe observatory. Sol Phys 290(3): 951–977. https://doi.org/10.1007/s11207-014-0640-5. [CrossRef] [Google Scholar]
- Pötzi W, Veronig AM, Temmer M, Baumgartner DJ, Freislich H, Strutzmann H. 2016. 70 years of sunspot observations at the Kanzelhöhe observatory: Systematic study of parameters affecting the derivation of the relative sunspot number. Sol Phys 291(9–10): 3103–3122. https://doi.org/10.1007/s11207-016-0857-6. [CrossRef] [Google Scholar]
- Pötzi W, Veronig AM, Temmer M. 2018. An event-based verification scheme for the real-time flare detection system at Kanzelhöhe observatory. Sol Phys 293(6): 94. https://doi.org/10.1007/s11207-018-1312-7. [CrossRef] [Google Scholar]
- Qahwaji R, Colak T. 2007. Automatic short-term solar flare prediction using machine learning and sunspot associations. Sol Phys 241(1): 195–211. https://doi.org/10.1007/s11207-006-0272-5. [CrossRef] [Google Scholar]
- Quintero Noda C, Uitenbroek H, Katsukawa Y, Shimizu T, Oba T, et al. 2017. Solar polarimetry through the K I lines at 770 nm. Mon Not R Astron Soc 470(2): 1453–1461. https://doi.org/10.1093/mnras/stx1344. [CrossRef] [Google Scholar]
- Ravindra B, Kesavan P, Thulasidharen KC, Rajalingam M, Sagayanathan K, et al. 2018. Installation of solar chromospheric telescope at the Indian Astronomical Observatory, Merak. J Astrophys Astron 39(5): 60. https://doi.org/10.1007/s12036-018-9554-1. [CrossRef] [Google Scholar]
- Rhodes EJ, Cacciani A, Tomczyk S, Ulrich RK, Blamont J, Howard RF, Dumont P, Smith EJ. 1984. A compact dopplergraph/magnetograph suitable for space-based measurements of solar oscillations and magnetic fields. Adv Space Res 4(8): 103–112. https://doi.org/10.1016/0273-1177(84)90371-5. [CrossRef] [Google Scholar]
- Schrijver CJ. 2007. A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting. Astrophys J Lett 655: L117–L120. https://doi.org/10.1086/511857. [CrossRef] [Google Scholar]
- Schrijver CJ. 2015. Socio-economic hazards and impacts of space weather: The important range between mild and extreme. Space Weather 13(9): 524–528. https://doi.org/10.1002/2015SW001252. [CrossRef] [Google Scholar]
- Severino G, Moretti PF, Oliviero M, Vamos Team. 2001. The velocity and magnetic observations of the Sun (VAMOS) project: Status and future prospects. In: SOHO 10/GONG 2000 Workshop: Helio- and Asteroseismology at the Dawn of the Millennium, Wilson A, Pallé PL (Eds.), Vol. 464 of ESA Special Publication, pp. 337–340. [Google Scholar]
- Shan X, Sun X, Luo J, Tan Z, Zhan M. 2006. Free-space quantum key distribution with Rb vapor filters. Appl Phys Lett 89(19): 191,121. https://doi.org/10.1063/1.2387867. [Google Scholar]
- Stangalini M, Moretti PF, Berrilli F, Del Moro D, Jefferies SM, Severino G, Oliviero M. 2011. DIMMI-2h a MOF-based instrument for Solar Satellite ADAHELI. In: Proc. SPIE, Vol. 8148 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p. 81480U. https://doi.org/10.1117/12.893579. [CrossRef] [Google Scholar]
- Stangalini M, Piazzesi R, Speziali R, Dal Sasso L. 2018. SAMM: The solar activity MOF monitor. In Proc. SPIE, Vol. 10700 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p. 107001K. https://doi.org/10.1117/12.2313373. [Google Scholar]
- Supriya HD, Smitha HN, Nagendra KN, Stenflo JO, Bianda M, Ramelli R, Ravindra B, Anusha LS. 2014. Center-to-limb observations and modeling of the Ca I 4227 Å line. Astrophys J 793(1): 42. https://doi.org/10.1088/0004-637X/793/1/42. [CrossRef] [Google Scholar]
- Tomczyk S, Cacciani A, Veitzer SA. 1993, LOWL – an instrument to observe low-degree solar oscillations. In: GONG 1992. Seismic Investigation of the Sun and Stars, Brown TM (Ed.), Vol. 42 of Astronomical Society of the Pacific Conference Series, p. 469. [Google Scholar]
- Tomczyk S, Streander K, Card G, Elmore D, Hull H, Cacciani A. 1995. An instrument to observe low-degree solar oscillations. Sol Phys 159(1): 1–21. https://doi.org/10.1007/BF00733027. [CrossRef] [Google Scholar]
- Uitenbroek H. 2006. Chromospheric diagnostics. In: Solar MHD theory and observations: A high spatial resolution perspective, Leibacher J, Stein RF, Uitenbroek H (Eds.), Vol. 354 of Astronomical Society of the Pacific Conference Series, p. 313. [Google Scholar]
- Veronig AM, Pötzi W. 2016. Ground-based observations of the solar sources of space weather. In: Coimbra Solar Physics Meeting: Ground-based Solar Observations in the Space Instrumentation Era, Dorotovic I, Fischer CE, Temmer M (Eds.), Vol. 504 of Astronomical Society of the Pacific Conference Series, p. 247. [Google Scholar]
- Wallace L, Hinkle KH, Livingston WC, Davis SP. 2011. An optical and near-infrared (2958–9250 Å) solar flux Atlas. Astrophys J Suppl Ser 195(1): 6. https://doi.org/10.1088/0067-0049/195/1/6. [CrossRef] [Google Scholar]
- Wang Y, Liu J, Jiang Y, Erdélyi R. 2019. CME arrival time prediction using convolutional neural network. Astrophys J 881(1): 15. https://doi.org/10.3847/1538-4357/ab2b3e. [CrossRef] [Google Scholar]
- Wang J, Zhang Y, Hess Webber SA, Liu S, Meng X, Wang T. 2020. Solar flare predictive features derived from polarity inversion line masks in active regions using an unsupervised machine learning algorithm. Astrophys J 892(2): 140. https://doi.org/10.3847/1538-4357/ab7b6c. [CrossRef] [Google Scholar]
- Welsch BT, Longcope DW. 2003. Magnetic helicity injection by horizontal flows in the Quiet Sun. I. Mutual-helicity flux. Astrophys J 588: 620–629. https://doi.org/10.1086/368408. [CrossRef] [Google Scholar]
- Wiegelmann T, Sakurai T. 2012. Solar force-free magnetic fields. Living Rev Sol Phys 9: Article ID 5. https://doi.org/10.12942/lrsp-2012-5. [CrossRef] [Google Scholar]
- Xia Y, Cheng X, Li F, Yang Y, Lin X, Jiao J, Du L, Wang J, Yang G. 2020. Sodium lidar observation over full diurnal cycles in Beijing, China. Appl Opt 59(6): 1529. https://doi.org/10.1364/AO.382077. [CrossRef] [Google Scholar]
- Yan Y, Zhang J, Wang W, Liu F, Chen Z, Ji G. 2009. The Chinese Spectral Radioheliograph – CSRH. Earth Moon Planets 104(1–4): 97–100. https://doi.org/10.1007/s11038-008-9254-y. [CrossRef] [Google Scholar]
- Yan Y, Wang W, Chen L, Liu F, Geng L, Chen Z. 2018. New interplanetary scintillation array in China for space weather. Sun Geosph 13: 153–155. https://doi.org/10.31401/SunGeo.2018.02.05. [Google Scholar]
- Yan Y, Chen Z, Wang W, Liu F, Geng L, Chen L, Tan C, Chen X, Su C, Tan B. 2021. Mingantu spectral radioheliograph for solar and space weather studies. Front Astron Space Sci 8(584043): 1–13. https://doi.org/10.3389/fspas.2021.584043, https://www.frontiersin.org/articles/10.3389/fspas.2021.584043/abstract. [Google Scholar]
- Yang Y, Cheng X, Li F, Hu X, Lin X, Gong S. 2011. A flat spectral Faraday filter for sodium lidar. Opt Lett 36(7): 1302. https://doi.org/10.1364/OL.36.001302. [CrossRef] [Google Scholar]
- Ye Y, Korsós MB, Erdélyi R. 2018. Detailed analysis of dynamic evolution of three Active Regions at the photospheric level before flare and CME occurrence. Adv Space Res 61(2): 673–682. https://doi.org/10.1016/j.asr.2017.09.038. [CrossRef] [Google Scholar]
- Zhao J, Hing D, Chen R, Hess Webber S. 2019. Imaging the Sun’s far-side active regions by applying multiple measurement schemes on multiskip acoustic waves. Astrophys J 887(2): 216. https://doi.org/10.3847/1538-4357/ab5951. [CrossRef] [Google Scholar]
- Zielińska JA, Beduini FA, Lucivero VG, Mitchell MW. 2014. Atomic filtering for hybrid continuous-variable/discrete-variable quantum optics. Opt Express 22(21): 25307–25317. https://doi.org/10.1364/OE.22.025307. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.