Open Access
Issue |
J. Space Weather Space Clim.
Volume 13, 2023
|
|
---|---|---|
Article Number | 6 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/swsc/2023004 | |
Published online | 13 March 2023 |
- Allen J, Sauer H, Frank L, Reiff P. 1989. Effects of the March 1989 solar activity. Eos Trans Am Geophys Union 70(46): 1479–1488. https://doi.org/10.1029/89EO00409. [CrossRef] [Google Scholar]
- Amm O. 1997. Ionospheric elementary current systems in spherical coordinates and their application. J Geomagn Geoelectr 49: 947–955. https://doi.org/10.5636/jgg.49.947. [CrossRef] [Google Scholar]
- Amm O, Viljanen A. 1998. Ionospheric disturbance magnetic field continuation from the ground to the ionosphere using spherical elementary current systems. Earth Planets Space 51(6): 431–440. https://doi.org/10.1186/BF03352247. [Google Scholar]
- Bahr K. 1988. Interpretation of the magnetotelluric impedance tensor: regional induction and local telluric distortion. J Geophys Res 62: 119–127. [Google Scholar]
- Bakker AK, Samrock JF, Geraskin A, Pankratov O. 2015. Introducing inter-site phase tensors to suppress galvanic distortion in the telluric method. Earth Planets Space 67: 160. https://doi.org/10.1186/s40623-015-0327-7. [CrossRef] [Google Scholar]
- Beggan C, Richardson G, Baillie O, Hubert J, Thomson A.W.P.. 2021. Geoelectric field measurement, modelling and validation during geomagnetic storms in the UK. J Space Weather Space Clim 11: 37. https://doi.org/10.1051/swsc/2021022. [CrossRef] [EDP Sciences] [Google Scholar]
- Blake SP. 2017. Modelling and Monitoring Geomagnetically Induced Currents in Ireland, Ph.D. thesis, Trinity College Dublin. http://www.tara.tcd.ie/handle/2262/82549. [Google Scholar]
- Blake SP, Gallagher PT, Campanyà J, Hogg C, Beggan CD, Thomson AWP, Richardson GS, Bell D. 2018. A detailed model of the irish high voltage power network for simulating GICs. Space Weather 16(11): 1770–1783. https://doi.org/10.1029/2018SW001926. [CrossRef] [Google Scholar]
- Blake SP, Gallagher PT, McCauley J, Jones AG, Hogg C, Campanyà J, Beggan CD, Thomson AWP, Kelly GS, Bell D. 2016. Geomagnetically induced currents in the Irish power network during geomagnetic storms. Space Weather 14(12): 1136–1154. https://doi.org/10.1002/2016SW001534. [CrossRef] [Google Scholar]
- Béland J, Small K. 2005. Space weather effects on power transmission systems: the cases of hydro-québec and transpower New ZealandLtd. In: Effects of Space Weather on Technology Infrastructure, Daglis IA (Ed.), Springer Netherlands, Dordrecht, pp. 287–299. ISBN 978-1-4020-2754-3. https://dx.doi.org/10.1007/1-4020-2754-0_15. [CrossRef] [Google Scholar]
- Bolduc L. 2002. GIC observations and studies in the Hydro-Québec power system. J Atmos Sol Terr Phys 64: 1793–1802. https://doi.org/10.1016/S1364-6826(02)00128-1. [CrossRef] [Google Scholar]
- Bosse L, Lilensten J, Johnsen MG, Gillet N, Rochat S, Delboulbé A, Curaba S, Ogawa Y, Derverchère P, Vauclair S. 2022. The polarisation of auroral emissions: a tracer of the E region ionospheric currents. J Space Weather Space Clim 12: 17. https://doi.org/10.1051/swsc/2022014. [CrossRef] [EDP Sciences] [Google Scholar]
- Cagniard L. 1953. Basic theory of the magnetotelluric method of geophysical prospecting. Geophysics 18: 605–635. [CrossRef] [Google Scholar]
- Caldwell TG, Bibby HM, Brown C. 2004. The magnetotelluric phase tensor. Geophys J Int 158(2): 457–469. https://doi.org/10.1111/j.1365-246X.2004.02281.x. [CrossRef] [Google Scholar]
- Campanyà J., Gallagher P.T., Kiyan D., Blake D., Hogg C. et al. 2018. SWEMDI: Space Weather Electromagnet Database for Ireland. Available at https://www.gsi.ie/documents/2017-sc-037_FinalReport_CAMPANYA.pdf as of 29/11/2022. [Google Scholar]
- Campanyà J, Gallagher PT, Blake SP, Gibbs M, Jackson D, Beggan C, Richardson G, Hogg C. 2019. Modeling geoelectric fields in Ireland and the UK for space weather applications. Space Weather 17: 216–237. https://doi.org/10.1029/2018SW001999. [CrossRef] [Google Scholar]
- Chave AD, Jones AG. 2012. The Magnetotelluric Method: Theory and Practice. In: Chap. Distortion of magnetotelluric data: its identification and removal, Cambridge University Press. pp. 219–302, https://doi.org/10.1017/CBO9781139020138. ISBN 1108446809. [Google Scholar]
- Delhaye R, Rath V, Jones AG, Muller MR, Reay D. 2017. Correcting for static shift of magnetotelluric data with airborne electromagnetic measurements: a case study from Rathlin Basin, Northern Ireland. Solid Earth 8(3): 637–660. https://doi.org/10.5194/se-8-637-2017. [CrossRef] [Google Scholar]
- Ernst T, Jankowski J. 2005. On the plane wave approximation of the external geomagnetic field in regional induction studies. Izv Phys Solid Earth 41: 363–370. [Google Scholar]
- Gaunt CT, Coetzee G. 2007. G. Transformer failures in regions incorrectly considered to have low GIC-risk. IEEE Lausanne Power Tech, pp. 807–812. https://doi.org/10.1109/PCT.2007.4538419. [Google Scholar]
- Grawe MA, Makela JJ, Butala MD, Kamalabadi F. 2018. The impact of magnetic field temporal sampling on modeled surface electric fields. Space Weather 16(11): 1721–1739. https://doi.org/10.1029/2018SW001896. [CrossRef] [Google Scholar]
- Groom R, Bailey R. 1989. Decomposition of the Magnetotelluric impedance tensor in the presence of local three-dimensional galvanic distortion. J Geophys Res 94(B2): 1913–1925. https://doi.org/10.1029/JB094iB02p01913. [CrossRef] [Google Scholar]
- Kelbert A, Balch C, Pulkkinen A, Egbert G, Love J, Rigler E, Fujii I. 2017. Methodology for time-domain estimation of storm time geoelectric fields using 3-D magnetotelluric response tensors. Space Weather 15: 874–894. https://doi.org/10.1002/2017SW001594. [CrossRef] [Google Scholar]
- Koen J, Gaunt T. 2003. Geomagnetically induced currents in the Southern African electricity transmission network. In 2003 IEEE Bologna power tech conference proceedings, vol. 1, p. 7. https://doi.org/10.1109/PTC.2003.1304165. [Google Scholar]
- Kruglyakov M, Kuvshinov A, Marshalko E. 2022. Real-time 3-D modeling of the ground electric field due to space weather events. A concept and its validation. Space Weather 20(4): e2021SW002906. https://doi.org/10.1029/2021SW002906. [Google Scholar]
- Ledo J, Queralt P, Pous J. 1998. Effects of galvanic distortion on magnetotelluric data over a three dimensional structure. Geophys J Int 132: 295–301. https://doi.org/10.1046/j.1365-246x.1998.00417.x. [CrossRef] [Google Scholar]
- Marshalko E, Kruglyakov M, Kuvshinov A, Juusola L, Kwagala NK, Sokolova E, Pilipenko V. 2021. Comparing three approaches to the inducing source setting for the ground electromagnetic field modeling due to space weather events. Space Weather 19(2): e2020SW002657. https://doi.org/10.1029/2020SW002657. [CrossRef] [Google Scholar]
- McLay SA, Beggan CD. 2010. Interpolation of externally-caused magnetic fields over large sparse arrays using spherical elementary current systems. Ann Geophys 28(9): 1795–1805. https://doi.org/10.5194/angeo-28-1795-2010. [CrossRef] [Google Scholar]
- Murphy BS, Lucas GM, Love JJ, Kelbert A, Bedrosian PA, Rigler EJ. 2021. Magnetotelluric sampling and geoelectric hazard estimation: are national-scale surveys sufficient? Space Weather 19(7): e2020SW002693. https://doi.org/10.1029/2020SW002693. [CrossRef] [Google Scholar]
- Neukirch M, Galiana S, García X. 2020. Appraisal of magnetotelluric galvanic electric distortion by optimizing amplitude and phase tensor relations. Geophysics 85: E79–E98. https://doi.org/10.1190/geo2019-0359.1. [CrossRef] [Google Scholar]
- Neukirch M, Rudolf D, Garcia X, Galiana S. 2019. Amplitude-phase decomposition of the magnetotelluric impedance tensor. Geophysics E301–E310. https://doi.org/10.1190/geo2018-0352.1. [CrossRef] [Google Scholar]
- Oyedukun D, Heyns M, Cilliers P, Gaunt C. 2020. Frequency components of geomagnetically induced currents for power system modelling. In: International saupec conference, 29–31 January 2020, Cape Town, South Africa, pp. 1–6. https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041021. [Google Scholar]
- Patro PK, Uyeshima M, Siripunvaraporn W. 2012. Three-dimensional inversion of magnetotelluric phase tensor data. Geophys J Int 192: 58–66. https://doi.org/10.1093/gji/ggs014. [Google Scholar]
- Pulkkinen A, Lindahl S, Viljanen A, Pirjola R. 2005. Geomagnetic Storm of 29–31 October 2003: geomagnetically induced currents and their relation to the problems in the Swedish high voltage power transmission system. Space Weather 3(8): S08C03. https://doi.org/10.1029/2004SW000123. [Google Scholar]
- Rao CK, Jones AG, Moorkamp M, Weckmann U. 2014. Implications for the lithospheric geometry of the Iapetus suture beneath Ireland based on electrical resistivity models from deep-probing magnetotellurics. Geophys J Int 198(2): 737–759. https://doi.org/10.1093/gji/ggu136. [CrossRef] [Google Scholar]
- Samrock F, Grayver AV, Eysteinsson H, Saar MO. 2018. Magneto- telluric image of transcrustal magmatic system beneath the Tulu Moye geothermal prospect in the Ethiopian Rift. Geophys Res Lett 45: 847–855. https://doi.org/10.1029/2018GL080333. [CrossRef] [Google Scholar]
- Schmidt A, Dabas M, Sarris A. 2020. Dreaming of perfect data: characterizing noise in Archaeo-geophysical measurements. Geosciences 10: 382–390. https://doi.org/10.3390/geosciences10100382. [CrossRef] [Google Scholar]
- Simpson F, Bahr K. 2020. Estimating the electric field response to the Halloween 2003 and September 2017 magnetic storms across Scotland using observed geomagnetic fields, magnetotelluric impedances and perturbation tensors. J Space Weather Space Clim 10: 48. https://doi.org/10.1051/swsc/2020049. [CrossRef] [EDP Sciences] [Google Scholar]
- Simpson F, Bahr K. 2021. Nowcasting and validating earth’s electric field response to extreme space weather events using magnetotelluric data: application to the September 2017 geomagnetic storm and comparison to observed and modeled fields in Scotland. Space Weather 19(1): e2019SW002432. https://doi.org/10.1029/2019SW002432. [CrossRef] [Google Scholar]
- Tietze K, Ritter O, Egbert GD. 2015. 3-D joint inversion of the magnetotelluric phase tensor and vertical magnetic transfer functions. Geophys J Int 203: 1128–1148. https://doi.org/10.1093/gji/ggv347. [CrossRef] [Google Scholar]
- Tikhonov A. 1950. On determining electrical characteristics of the deep layers of the Earth’s crust. Doklady 73: 295–297. [Google Scholar]
- Torta J, Pavon-Carrasco F, Marshal S, Finlay C. 2015. Evidence for a new geomagnetic jerk in 2014. Geophys Res Lett 42: 7933–7940. https://doi.org/10.1002/2015GL065501. [CrossRef] [Google Scholar]
- Torta JM, Marcuello A, Campanyà J, Marsal S, Queralt P, Ledo J. 2017. Improving the modeling of geomagnetically induced currents in Spain. Space Weather 15(5): 691–703. https://doi.org/10.1002/2017SW001628. [CrossRef] [Google Scholar]
- Trichtchenko L. 2021. Frequency considerations in GIC applications. Space Weather 19(8): e2020SW002694. https://doi.org/10.1029/2020SW002694. [CrossRef] [Google Scholar]
- Vanhamäki H, Maute A, Alken P. 2020. Dipolar elementary current systems for ionospheric current reconstruction at low and middle latitudes. Earth Planets Space 72(1): 146–159. https://doi.org/10.1186/s40623-020-01284-1. [CrossRef] [Google Scholar]
- Weigel R. 2017. A comparison of methods for estimating the geoelectric field. Space Weather 15: 430–440. https://doi.org/10.1002/2016SW001504. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.