Open Access
Issue |
J. Space Weather Space Clim.
Volume 13, 2023
|
|
---|---|---|
Article Number | 7 | |
Number of page(s) | 24 | |
DOI | https://doi.org/10.1051/swsc/2023005 | |
Published online | 04 April 2023 |
- Araujo-Pradere EA, Fuller-Rowell TJ, Bilitza D. 2004. Ionospheric variability for quiet and perturbed conditions. Adv Space Res 34(9): 1914–1921. https://doi.org/10.1016/j.asr.2004.06.007. [CrossRef] [Google Scholar]
- Araujo-Pradere EA, Fuller-Rowell TJ, Codrescu MV, Bilitza D. 2005. Characteristics of the ionospheric variability as a function of season, latitude, localtime, and geomagnetic activity. Radio Sci 40(5): RS5009. https://doi.org/10.1029/2004RS003179. [Google Scholar]
- Bergot N, Tsagouri I, Bruyninx C, Legrand J, Chevalier J-M, Defraigne P, Baire Q, Pottiaux E. 2013. The influence of space weather on ionospheric total electron content during the 23rd solar cycle. J Space Weather Space Clim 3: A25. https://doi.org/10.1051/swsc/2013047. [CrossRef] [EDP Sciences] [Google Scholar]
- Bust GS, Coker C, Coco DS, Gaussiran TL II, Lauderdale T. 2001. IRI data ingestion and ionospheric tomography. Adv Space Res 27(1): 157–165. https://doi.org/10.1016/S0273-1177(00)00163-0. [CrossRef] [Google Scholar]
- Bust GS, Garner TW, Gaussiran TL II. 2004. Ionospheric data assimilation three-dimensional (IDA3D): A global, multisensor, electron density specification algorithm. J Geophys Res: Space Phys 109(A11): A113112. https://doi.org/10.1029/2003JA010234. [Google Scholar]
- Chartier AT, Matsuo T, Anderson JL, Collins N, Hoar TJ, Lu G, Mitchell CN, Coster AJ, Paxton LJ, Bust GS. 2016. Ionospheric data assimilation and forecasting during storms. J Geophys Res: Space Phys 121(1): 764–778. https://doi.org/10.1002/2014JA020799. [CrossRef] [Google Scholar]
- Chen Z, Zhang S-R, Coster AJ, Fang G. 2015. EOF analysis and modeling of TEC climatology over North America. J Geophys Res: Space Phys 120(4): 3118–3129. https://doi.org/10.1002/2014JA020837. [CrossRef] [Google Scholar]
- Chen CH, Lin CH, Matsuo T, Chen WH, Lee IT, Liu JY, Lin JT, Hsu CT. 2016. Ionospheric data assimilation with thermosphere-ionosphere-electrodynamics general circulation model and GPS-TEC during geomagnetic storm conditions. J Geophys Res: Space Phys 121(6): 5708–5722. https://doi.org/10.1002/2015JA021787. [CrossRef] [Google Scholar]
- Chen C-H, Lin C-HC, Matsuo T. 2019. Ionospheric responses to the 21 August 2017 solar eclipse by using data assimilation approach. Prog Earth Planet Sci 6(13): 1–9. https://doi.org/10.1186/s40645-019-0263-4. [CrossRef] [Google Scholar]
- Codrescu SM, Codrescu MV, Fedrizzi M. 2018. An ensemble Kalman filter for the thermosphere-ionosphere. Space Weather 16(1): 57–68. https://doi.org/10.1002/2017SW001752. [CrossRef] [Google Scholar]
- Drob DP, Emmert JT, Meriwether JW, Makela JJ, Doornbos E, et al. 2015. An update to the Horizontal Wind Model (HWM): The quite time thermosphere. Earth Space Sci 2(7): 301–319. https://doi.org/10.1002/2014ea000089. [CrossRef] [Google Scholar]
- Eckermann SD, Ma J, Hoppel KW, Kuhl DD, Allen DR, et al. 2018. High altitude (0–100 km) global atmospheric reanalysis system: Description and application to the 2014 austral winter of the Deep Propagating Gravity-Wave Experiment (DEEPWAVE). Mon Wea Rev 146: 2639–2666. https://doi.org/10.1175/MWR-D-17-0386.1. [CrossRef] [Google Scholar]
- Elvidge S, Angling MJ. 2019. Using the local ensemble transform Kalman filter for upper atmospheric modelling. J Space Weather Space Clim 9: A30. https://doi.org/10.1051/swsc/2019018. [CrossRef] [EDP Sciences] [Google Scholar]
- Emmert JT, Mannucci AJ, McDonald SE, Vergados P. 2017. Attribution of interminimum changes in global and hemispheric total electron content. J Geophys Res: Space Phys 122(2): 2424–2439. https://doi.org/10.1002/2016JA023680. [CrossRef] [Google Scholar]
- Fang T-W, Akmaev R, Fuller-Rowell T, Wu F, Maruyama N, Millward G. 2013. Longitudinal and day-to-day variability in the ionosphere from lower atmosphere tidal forcing. Geophys Res Lett 40(11): 2523–2528. https://doi.org/10.1002/grl.50550. [CrossRef] [Google Scholar]
- Fang T-W, Fuller-Rowell T, Yudin V, Matsuo T, Viereck R. 2018. Quantifying the sources of ionosphere day-to-day variability. J Geophys Res: Space Phys 123(11): 9682–9696. https://doi.org/10.1029/2018JA025525. [CrossRef] [Google Scholar]
- Forbes JM, Palo SE, Zhang X. 2000. Variability of the ionosphere. J Atmos Sol-Terr Phys 62(8): 685–693. https://doi.org/10.1016/S1364-6826(00)00029-8. [CrossRef] [Google Scholar]
- Forsythe VV, Azeem I, Crowley G. 2020a. Ionospheric horizontal correlation distances: Estimation, analysis, and implications for ionospheric data assimilation. Radio Sci 55(12): e2020RS007159. https://doi.org/10.1029/2020rs007159. [Google Scholar]
- Forsythe VV, Azeem I, Crowley G, Makarevich RA, Wang C. 2020b. The global analysis of the ionospheric correlation time and its implications for ionospheric data assimilation. Radio Sci 55(12): e2020RS007181. https://doi.org/10.1029/2020rs007181. [Google Scholar]
- Forsythe VV, Azeem I, Crowley G, Themens DR. 2021a. Ionospheric vertical correlation distances: Estimation from ISR data, analysis, and implications for ionospheric data assimilation. Radio Sci 56(2): e2020RS007177. https://doi.org/10.1029/2020RS007177. [Google Scholar]
- Forsythe VV, Azeem I, Blay R, Crowley G, Gasperini F, Hughes J, Makarevich RA, Wu W. 2021b. Evaluation of the new background error covariance model for the ionospheric data assimilation. Radio Sci 56(8): e2021RS007286. https://doi.org/10.1029/2021rs007286. [Google Scholar]
- Gail WB, Prag AB, Coco DS, Coker C. 1993. A statistical characterization of local mid-latitude total electron content. J Geophys Res: Space Phys 98(A9): 15717–15727. https://doi.org/10.1029/92ja01597. [CrossRef] [Google Scholar]
- Gaspari G, Cohn SE. 1999. Construction of correlation functions in two and three dimensions. Quart J Roy Meteor Soc 125(554): 723–757. https://doi.org/10.1002/qj.49712555417. [CrossRef] [Google Scholar]
- Greybush SJ, Kalnay E, Miyoshi T, Ide K, Hunt BR. 2011. Balance and ensemble Kalman filter localization techniques. Mon Wea Rev 139: 511–522. https://doi.org/10.1175/2010MWR3328.1. [CrossRef] [Google Scholar]
- Hsu C-T, Matsuo T, Wang W, Liu J-Y. 2014. Effects of inferring unobserved thermospheric and ionospheric state variables by using an Ensemble Kalman filter on global ionospheric specification and forecasting. J Geophys Res: Space Phy 119(11): 9256–9267. https://doi.org/10.1002/2014JA020390. [CrossRef] [Google Scholar]
- Huba JD, Joyce G, Fedder JA. 2000. Sami2 is Another Model of the Ionosphere (SAMI2): A new low-latitude ionosphere model. J Geophys Res: Space Phys 105(A10): 23035–23053. https://doi.org/10.1029/2000JA000035. [CrossRef] [Google Scholar]
- Huba JD, Maunte A, Crowley G. 2017. SAMI3_ICON: Model of the ionosphere/plasmasphere system. Space Sci Rev 212: 731–742. https://doi.org/10.1007/s11214-017-0415-z. [CrossRef] [Google Scholar]
- Iijima BI, Harris IL, Ho CM, Lindqwister UJ, Mannucci AJ, Pi X, Reyes MJ, Sparks LC, Wilson BD. 1999. Automated daily process for global ionospheric total electron content maps and satellite ocean altimeter calibration based on Global Positioning System data. J Atmos Sol-Terr Phys 61(16): 1205–1218. https://doi.org/10.1016/S1364-6826(99)00067-X. [CrossRef] [Google Scholar]
- Kepert JD. 2009. Covariance localization and balance in an ensemble Kalman filter. Quart J Roy Meteor Soc 135(642): 1157–1176. https://doi.org/10.1002/qj.443. [CrossRef] [Google Scholar]
- Khattatov B, Murphy M, Gnedin M, Sheffel J, Adams J, Cruickshank B, Yudin V, Fuller-Rowell T, Retterer J. 2005. Ionospheric nowcasting via assimilation of gps measurements of ionospheric electron content in a global physics-based time-dependent model. Quart J Roy Meteor Soc 131(613): 3543–3559. https://doi.org/10.1256/qj.05.96. [CrossRef] [Google Scholar]
- Klobuchar JA, Johanson JM. 1977. Correlation distance of mean-daytime electron content. In: Rep. AFGL-TR-77-1885, Air Force Geophys. Lab. Bedford, Mass. https://apps.dtic.mil/sti/citations/ADA048117. [Google Scholar]
- Laundal KM, Richmond AD. 2016. Magnetic coordinate systems. Space Sci Rev 206: 27–59. https://doi.org/10.1007/s11214-016-0275-y. [Google Scholar]
- Lin CY, Matsuo T, Liu JY, Lin CH, Tsai HF, Araujo-Pradere EA. 2015. Ionospheric assimlation of radio occultation and ground-based GPS data using non-stationary background model error covariance. Atmos Meas Tech 8: 171–182. https://doi.org/10.5194/amt-8-171-2015. [CrossRef] [Google Scholar]
- Liu L, Chen Y. 2009. Statistical analysis of solar activity variations of total electron content derived at Jet Propulsion Laboratory from GPS observations. J Geophys Res: Space Phys 114(A10): A10311. https://doi.org/10.1029/2009JA014533. [CrossRef] [Google Scholar]
- Liu H-L, Foster BT, Hagan ME, McInerney JM, Maute A, et al. 2010. Thermosphere extension of the Whole Atmosphere Community Climate Model. J Geophys Res 115(A12302). https://doi.org/10.1029/2010JA015586. [Google Scholar]
- Liu S, Yang J, Yu T, Zhang Z. 2018. Horizontal spatial correlations of the ionospheric TEC derived from GPS global ionospheric maps. Adv Space Res 62(7): 1775–1786. https://doi.org/10.1016/j.asr.2018.06.042. [CrossRef] [Google Scholar]
- Mannucci AJ, Wilson BD, Yuan DN, Ho CH, Lindqwister UJ, Runge TF. 1998. A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33(3): 565–582. https://doi.org/10.1029/97rs02707. [CrossRef] [Google Scholar]
- Matsuo T, Lee I-T, Anderson JL. 2013. Thermospheric mass density specification using and ensemble Kalman filter. J Geophys Res: Space Phys 118(3): 1339–1350. https://doi.org/10.1002/jgra.50162. [CrossRef] [Google Scholar]
- McDonald SE, Sassi F, Tate J, McCormack J, Kuhl DD, Drob DP, Metzler C, Mannucci AJ. 2018. Impact of non-migrating tides on the low latitude ionosphere during a sudden stratospheric warming event in January 2010. J Atmos Sol-Terr Phys 171: 188–200. https://doi.org/10.1016/j.jastp.2017.09.012. [CrossRef] [Google Scholar]
- McNamara LF. 2009. Spatial correlations of foF2 deviations and their implications for global ionospheric models: 2. Digisondes in the United States, Europe, and South Africa. Radio Sci 44(2): RS2017. https://doi.org/10.1029/2008RS003956. [Google Scholar]
- McNamara LF, Wilkinson PJ. 2009. Spatial correlations of foF2 deviations and their implications for global ionospheric models: 1. Ionosondes in Australia and Papua New Guinea. Radio Sci 44(2): RS2016. https://doi.org/10.1029/2008RS003955. [Google Scholar]
- Mengist CK, Ssessanga N, Jeong S-H, Kim J-H, Kim YH, Kwak Y-S. 2019. Assimilation of multiple data types to a regional ionospheric model with 3D-Var algorithm (IDA4D). Space Weather 17(7): 1018–1039. https://doi.org/10.1029/2019SW002159. [Google Scholar]
- Monahan AM, Fyfe JC, Ambaum MHP, Stephenson DB, North GR. 2009. Empirical orthogonal functions: The medium is in the message. J Clim 22(24): 6501–6514. https://doi.org/10.1175/2009JCLI3062.1. [CrossRef] [Google Scholar]
- Morozov AV, Ridley AJ, Bernstein DS, Collins N, Hoar TJ, Anderson JL. 2013. Data ssimilation and driver estimation for the Global Ionosphere-Thermosphere Model using the ensemble adjustment Kalman filter. J Atmos Sol-Terr Phys 104: 126–136. https://doi.org/10.1016/j.jastp.2013.08.016. [CrossRef] [Google Scholar]
- Morzfeld M, Hodyss D. 2023. A theory for why even simple covariance localization is so useful in ensemble data assimilation. Mon Wea Rev 151: 717–736. https://doi.org/10.1175/MWR-D-22-0255.1. [CrossRef] [Google Scholar]
- Nisbet JS, Tyrnov OF, Zintchenko GN, Ross WJ. 1981. Limits on the accuracy of correction of trans-ionospheric propagation errors by using ionospheric models based on solar and magnetic indices and local measurements. Radio Sci 16(1): 127–133. https://doi.org/10.1029/Rs016i001p00127. [CrossRef] [Google Scholar]
- Pedatella NM, Liu H-L, Marsh DR, Raeder K, Anderson JL, Chau JL, Goncharenko LP, Siddiqui TA. 2018. Analysis and hindcast experiments of the 2009 sudden stratospheric warming in WACCMX+DART. J Geophys Res: Space Phys 123(4): 3131–3153. https://doi.org/10.1002/2017JA025107. [CrossRef] [Google Scholar]
- Pedatella NM, Anderson JL, Chen CH, Raeder K, Liu J, Liu H-L, Lin CH. 2020. Assimilation of ionospheric observations in the Whole Atmosphere Community Climate Model with Thermosphere-Ionosphere Extension (WACCMX). J Geophsy Res: Space Phys 125(9): e2020JA028251. https://doi.org/10.1029/2020JA028251. [Google Scholar]
- Picone JM, Hedin AE, Drob DP, Aikin AC. 2002. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J Geophys Res: Space Phys 107(A12): SIA 15-1–SIA 15-16. https://doi.org/10.1029/2002JA009430. [CrossRef] [Google Scholar]
- Richmond AD. 1995. Ionospheric electrodynamics using magnetic apex coordinates. J Geomagn Geoelectr 47(2): 191–212. https://doi.org/10.5636/Jgg.47.191. [CrossRef] [Google Scholar]
- Rishbeth H, Mendillo M. 2001. Patterns of F2-layer variability. J Atmos Sol-Terr Phys 63(15): 1661–1680. https://doi.org/10.1016/S1364-6826(01)00036-0. [CrossRef] [Google Scholar]
- Rush CM, Gibbs J. 1973. Predicting the day-to-day variability of the mid-latitude ionosphere for application to HF propagation predictions. Tech. Rep. AD-764 711. https://apps.dtic.mil/sti/citations/AD0764711. [Google Scholar]
- Scherliess L, Schunk RW, Sojka JJ, Thompson DC. 2004. Development of a physics-based reduced state Kalman filter for the ionosphere. Radio Sci 39(1): RS1S04. https://doi.org/10.1029/2002RS002797. [Google Scholar]
- Shim JS, Scherliess L, Shunk RW, Thompson DC. 2008. Spatial correlations of day-to-day ionospheric total electron content variability obtained from ground-based GPS. J Geophys Res: Space Phys 113(A9): A09309. https://doi.org/10.1029/2007JA012635. [Google Scholar]
- Siddiqui TA, Yamazaki Y, Stolle C, Maute A, Laštovička J, Edemskiy IK, Mošna Z, Sivakandan M. 2021. Understanding the total electron contant variability over Europe during 2009 and 2019 SSWs. J Geophys Res: Space Phys 126(9): e2020JA028751. https://doi.org/10.1029/2020JA028751. [CrossRef] [Google Scholar]
- Solomontsev DV, Khattatov BV, Codrescu MV, Titov AA, Yudin V, Khattatov VU. 2012. Ionosphere state and parameter estimation using the Ensemble Square Root Filter and the global three-dimensional first-principal model. Space Weather 10(7): S07004. https://doi.org/10.1029/2012SW000777. [Google Scholar]
- Talaat ER, Shu X. 2016. Spatial and temporal variation of total electron content as revealed by principal component analysis. Ann Geophys 34: 1109–1118. https://doi.org/10.5194/angeo-34-1109-2016. [CrossRef] [Google Scholar]
- Vaishnav R, Jacobi C, Berdermann J. 2019. Long-term trends in the ionospheric response to solar extreme-ultraviolet variations. Ann Geophys 37: 1141–1159. https://doi.org/10.5194/angeo-37-1141-2019. [CrossRef] [Google Scholar]
- Yue X, Wan W, Liu L, Mao T. 2007. Statistical analysis on spatial correlation of ionospheric day-to-day variability by using GPS and Incoherent Scatter Radar observations. Ann Geophys 25: 1815–1825. https://doi.org/10.5194/angeo-25-1815-2007. [CrossRef] [Google Scholar]
- Zawdie KA, Dhadly MS, McDonald SE, Sassi F, Coker C, Drob DP. 2020. Day-to-day variability of the bottomside ionosphere. J Atmos Sol-Terr Phys 205: 105299. https://doi.org/10.1016/j.jastp.2020.105299. [CrossRef] [Google Scholar]
- Zhang M-L, Liu L, Li Q. 2021. Modeling the global ionospheric electron density based onthe EOF decomposition of the ionospheric radio occultation observation. Adv Space Res 68(5): 2218–2232. https://doi.org/10.1016/j.asr.2020.09.033. [CrossRef] [Google Scholar]
- Zhong J, Lei J, Yue X, Wang W, Burns AG, Luan X, Dou X. 2019. Empirical orthogonal function analysis and modeling of the topside ionospheric and plasmaspheric TECs. J Geophys Res: Space Phys 124(5): 3681–3698. https://doi.org/10.1029/2019JA026691. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.