Open Access
Issue |
J. Space Weather Space Clim.
Volume 13, 2023
|
|
---|---|---|
Article Number | 20 | |
Number of page(s) | 23 | |
DOI | https://doi.org/10.1051/swsc/2023017 | |
Published online | 10 July 2023 |
- Ala-Lahti M, Pulkkinen TI, Pfau-Kempf Y, Grandin M, Palmroth M. 2022. Energy flux through the magnetopause during flux transfer events in hybrid-Vlasov 2D simulations. Geophys Res Lett 49(19): e2022GL100,079. https://doi.org/10.1029/2022GL100079. [CrossRef] [Google Scholar]
- Angelopoulos V, Kennel CF, Coroniti FV, Pellat R, Kivelson MG, Walker RJ, Russell CT, Baumjohann W, Feldman WC, Gosling JT. 1994. Statistical characteristics of bursty bulk flow events. J Geophys Res 99(A11): 21257–21280. https://doi.org/10.1029/94JA01263. [CrossRef] [Google Scholar]
- Baumjohann W, Paschmann G, Luehr H. 1990. Characteristics of high-speed ion flows in the plasma sheet. J Geophys Res 95(A4): 3801–3809. https://doi.org/10.1029/JA095iA04p03801. [CrossRef] [Google Scholar]
- Bryant CR, McWilliams KA, Frey HU. 2013. Localized dayside proton aurora at high latitudes. J Geophys Res (Space Phys) 118(6): 3157–3164. https://doi.org/10.1002/jgra.50311. [CrossRef] [Google Scholar]
- Cao X, Ni B, Liang J, Xiang Z, Wang Q, et al. 2016. Resonant scattering of central plasma sheet protons by multiband EMIC waves and resultant proton loss timescales. J Geophys Res (Space Phys) 121(2): 1219–1232. https://doi.org/10.1002/2015JA021933. [CrossRef] [Google Scholar]
- Clilverd MA, Rodger CJ, Freeman MP, Brundell JB, Mac Manus DH, et al. 2021. Geomagnetically induced currents during the 07–08 September 2017 disturbed period: a global perspective. J Space Weather Space Clim 11: 33. https://doi.org/10.1051/swsc/2021014. [CrossRef] [EDP Sciences] [Google Scholar]
- Connor HK, Raeder J, Sibeck DG, Trattner KJ. 2015. Relation between cusp ion structures and dayside reconnection for four IMF clock angles: OpenGGCM-LTPT results. J Geophys Res (Space Phys) 120(6): 4890–4906. https://doi.org/10.1002/2015JA021156. [CrossRef] [Google Scholar]
- Donovan EF, Jackel BJ, Voronkov I, Sotirelis T, Creutzberg F, Nicholson NA. 2003. Ground-based optical determination of the b2i boundary: A basis for an optical MT-index. J Geophys Res (Space Phys) 108(A3): 1115. https://doi.org/10.1029/2001JA009198. [CrossRef] [Google Scholar]
- Dubart M, Ganse U, Osmane A, Johlander A, Battarbee M, Grandin M, Pfau-Kempf Y, Turc L, Palmroth M. 2020. Resolution dependence of magnetosheath waves in global hybrid-Vlasov simulations. Ann Geophys 38(6): 1283–1298. https://doi.org/10.5194/angeo-38-1283-2020. [CrossRef] [Google Scholar]
- Ebihara Y, Watari S, Kumar S. 2021. Prediction of geomagnetically induced currents (GICs) flowing in Japanese power grid for Carrington-class magnetic storms. Earth Planets Space 73(1): 163. https://doi.org/10.1186/s40623-021-01493-2. [CrossRef] [Google Scholar]
- Forsyth C, Sergeev VA, Henderson MG, Nishimura Y, Gallardo-Lacourt B. 2020. Physical processes of meso-scale, dynamic auroral forms. Space Sci Rev 216(4): 46. https://doi.org/10.1007/s11214-020-00665-y. [CrossRef] [Google Scholar]
- Galand M, Chakrabarti S. 2006. Proton aurora observed from the ground. J Atmos Sol-Terr Phys 68(13): 1488–1501. https://doi.org/10.1016/j.jastp.2005.04.013. [CrossRef] [Google Scholar]
- Galand M, Lummerzheim D. 2004. Contribution of proton precipitation to space-based auroral FUV observations. J Geophys Res (Space Phys) 109(A3): A03,307. https://doi.org/10.1029/2003JA010321. [Google Scholar]
- Galand M, Lummerzheim D, Stephan AW, Bush BC, Chakrabarti S. 2002. Electron and proton aurora observed spectroscopically in the far ultraviolet. J Geophys Res (Space Phys) 107(A7): 1129. https://doi.org/10.1029/2001JA000235. [CrossRef] [Google Scholar]
- Gallardo-Lacourt B, Frey HU, Martinis C. 2021. Proton aurora and optical emissions in the subauroral region. Space Sci Rev 217(1): 10. https://doi.org/10.1007/s11214-020-00776-6. [CrossRef] [Google Scholar]
- Ganse U, Koskela T, Battarbee M, Pfau-Kempf Y, Papadakis K, et al. 2023. Enabling technology for global 3D + 3V hybrid-Vlasov simulations of near-Earth space. Phys Plasmas 30(4): 042,902. https://doi.org/10.1063/5.0134387. [Google Scholar]
- Ganushkina NY, Swiger B, Dubyagin S, Matéo-Vélez JC, Liemohn MW, Sicard A, Payan D. 2021. Worst-case severe environments for surface charging observed at LANL satellites as dependent on solar wind and geomagnetic conditions. Space Weather 19(9): e02,732. https://doi.org/10.1029/2021SW002732. [CrossRef] [Google Scholar]
- George H, Osmane A, Kilpua EKJ, Lejosne S, Turc L, et al. 2022. Estimating inner magnetospheric radial diffusion using a hybrid-Vlasov simulation. Front Astron Space Sci 9(866): 455. https://doi.org/10.3389/fspas.2022.866455. [CrossRef] [Google Scholar]
- Grandin M, Battarbee M, Osmane A, Ganse U, Pfau-Kempf Y, Turc L, Brito T, Koskela T, Dubart M, Palmroth M. 2019. Hybrid-Vlasov modelling of nightside auroral proton precipitation during southward interplanetary magnetic field conditions. Ann Geophys 37: 791–806. https://doi.org/10.5194/angeo-37-791-2019. [CrossRef] [Google Scholar]
- Grandin M, Turc L, Battarbee M, Ganse U, Johlander A, Pfau-Kempf Y, Dubart M, Palmroth M. 2020. Hybrid-Vlasov simulation of auroral proton precipitation in the cusps: Comparison of northward and southward interplanetary magnetic field driving. J Space Weather Space Clim 10: 51. https://doi.org/10.1051/swsc/2020053. [CrossRef] [EDP Sciences] [Google Scholar]
- Hardy DA, Gussenhoven MS, Brautigam D. 1989. A statistical model of auroral ion precipitation. J Geophys Res 94(A1): 370–392. https://doi.org/10.1029/JA094iA01p00370. [CrossRef] [Google Scholar]
- Hardy DA, Holeman EG, Burke WJ, Gentile LC, Bounar KH. 2008. Probability distributions of electron precipitation at high magnetic latitudes. J Geophys Res (Space Phys) 113(A6): A06,305. https://doi.org/10.1029/2007JA012746. [Google Scholar]
- Hoilijoki S, Ganse U, Sibeck DG, Cassak PA, Turc L, et al. 2019. Properties of magnetic reconnection and FTEs on the dayside magnetopause with and without positive IMF Bx component during southward IMF. J Geophys Res (Space Phys) 124(6): 4037–4048. https://doi.org/10.1029/2019JA026821. [CrossRef] [Google Scholar]
- Horne RB, Glauert SA, Meredith NP, Boscher D, Maget V, Heynderickx D, Pitchford D. 2013. Space weather impacts on satellites and forecasting the Earth’s electron radiation belts with SPACECAST. Space Weather 11(4): 169–186. https://doi.org/10.1002/swe.20023. [CrossRef] [Google Scholar]
- Johlander A, Battarbee M, Turc L, Ganse U, Pfau-Kempf Y, et al. 2022. Quasi-parallel shock reformation seen by magnetospheric multiscale and ion-kinetic simulations. Geophys Res Lett 49(2): e96,335. https://doi.org/10.1029/2021GL096335. [CrossRef] [Google Scholar]
- John HM, Forte B, Astin I, Allbrook T, Arnold A, Vani BC, Häggström I, Sato H. 2021. An EISCAT UHF/ESR experiment that explains how ionospheric irregularities induce GPS phase fluctuations at auroral and polar latitudes. Radio Sci 56(9): e07,236. https://doi.org/10.1029/2020RS007236. [Google Scholar]
- Jordanova VK, Spasojevic M, Thomsen MF. 2007. Modeling the electromagnetic ion cyclotron wave-induced formation of detached subauroral proton arcs. J Geophys Res (Space Phys) 112(A8): A08,209. https://doi.org/10.1029/2006JA012215. [Google Scholar]
- Juusola L, Kauristie K, Vanhamäki H, Aikio A, Kamp M. 2016. Comparison of auroral ionospheric and field-aligned currents derived from Swarm and ground magnetic field measurements. J Geophys Res (Space Phys) 121(9): 9256–9283. https://doi.org/10.1002/2016JA022961. [CrossRef] [Google Scholar]
- Karlson KA, Øieroset M, Moen J, Sandholt PE. 1996. A statistical study of flux transfer event signatures in the dayside aurora: The IMF By-related prenoon-postnoon asymmetry. J Geophys Res 101(A1): 59–68. https://doi.org/10.1029/95JA02590. [CrossRef] [Google Scholar]
- Kaufman AN, Rostler PS. 1971. The Darwin Model as a Tool for Electromagnetic Plasma Simulation. Phys Fluids 14(2): 446–448. https://doi.org/10.1063/1.1693451. [CrossRef] [Google Scholar]
- King JH, Papitashvili NE. 2005. Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data. J Geophys Res (Space Phys) 110: 2104. https://doi.org/10.1029/2004JA010649. [CrossRef] [Google Scholar]
- Knight HK, Strickland DJ, Correira J, Hecht JH, Straus PR. 2012. An empirical determination of proton auroral far ultraviolet emission efficiencies using a new nonclimatological proton flux extrapolation method. J Geophys Res (Space Phys) 117(A11): A11,316. https://doi.org/10.1029/2012JA017672. [Google Scholar]
- Liang J, Donovan E, Ni B, Yue C, Jiang F, Angelopoulos V. 2014. On an energy-latitude dispersion pattern of ion precipitation potentially associated with magnetospheric EMIC waves. J Geophys Res (Space Phys) 119(10): 8137–8160. https://doi.org/10.1002/2014JA020226. [CrossRef] [Google Scholar]
- Liang J, Donovan E, Spanswick E, Angelopoulos V. 2013. Multiprobe estimation of field line curvature radius in the equatorial magnetosphere and the use of proton precipitations in magnetosphere-ionosphere mapping. J Geophys Res (Space Phys) 118: 4924–4945. https://doi.org/10.1002/jgra.50454. [CrossRef] [Google Scholar]
- Lilensten J, Galand M. 1998. Proton-electron precipitation effects on the electron production and density above EISCAT (Tromsø) and ESR. Ann Geophys 16(10): 1299–1307. https://doi.org/10.1007/s00585-998-1299-8. [CrossRef] [Google Scholar]
- Liou K, Mitchell EJ. 2019. Hemispheric asymmetry of the premidnight aurora associated with the dawn-dusk component of the interplanetary magnetic field. J Geophys Res (Space Phys) 124(3): 1625–1634. https://doi.org/10.1029/2018JA025953. [CrossRef] [Google Scholar]
- Lysak RL, Song Y. 2002. Energetics of the ionospheric feedback interaction. J Geophys Res (Space Phys) 107(A8): 1160. https://doi.org/10.1029/2001JA000308. [Google Scholar]
- Maggiolo R, Echim M, Simon Wedlund C, Zhang Y, Fontaine D, Lointier G, Trotignon JG. 2012. Polar cap arcs from the magnetosphere to the ionosphere: kinetic modelling and observations by Cluster and TIMED. Ann Geophys 30(2): 283–302. https://doi.org/10.5194/angeo-30-283-2012. [CrossRef] [Google Scholar]
- Maynard NC, Weber EJ, Weimer DR, Moen J, Onsager T, Heelis RA, Egeland A. 1997. How wide in magnetic local time is the cusp? An event study. J Geophys Res 102(A3): 4765–4776. https://doi.org/10.1029/96JA03433. [CrossRef] [Google Scholar]
- Mende SB, Frey HU, Morsony BJ, Immel TJ. 2003. Statistical behavior of proton and electron auroras during substorms. J Geophys Res (Space Phys) 108(A9): 1339. https://doi.org/10.1029/2002JA009751. [CrossRef] [Google Scholar]
- Myllys M, Viljanen A, Rui ØA, Magne Ohnstad T. 2014. Geomagnetically induced currents in Norway: the northernmost high-voltage power grid in the world. J Space Weather Space Clim 4: A10. https://doi.org/10.1051/swsc/2014007. [CrossRef] [EDP Sciences] [Google Scholar]
- Newell PT, Sotirelis T, Wing S. 2009. Diffuse, monoenergetic, and broadband aurora: The global precipitation budget. J Geophys Res (Space Phys) 114(A9): A09,207. https://doi.org/10.1029/2009JA014326. [Google Scholar]
- Omidi N, Sibeck DG. 2007. Flux transfer events in the cusp. Geophys Res Lett 34(4): L04,106. https://doi.org/10.1029/2006GL028698. [CrossRef] [Google Scholar]
- Palmroth M. 2022. Daring to think of the impossible: The story of Vlasiator. Front Astron Space Sci 9(952): 248. https://doi.org/10.3389/fspas.2022.952248. [CrossRef] [Google Scholar]
- Palmroth M, Ganse U, Pfau-Kempf Y, Battarbee M, Turc L, Brito T, Grandin M, Hoilijoki S, Sandroos A, von Alfthan S. 2018. Vlasov methods in space physics and astrophysics. Living Rev. Comput. Astrophys 4: 1. https://doi.org/10.1007/s41115-018-0003-2. [CrossRef] [Google Scholar]
- Palmroth M, Janhunen P, Germany G, Lummerzheim D, Liou K, Baker DN, Barth C, Weatherwax AT, Watermann J. 2006. Precipitation and total power consumption in the ionosphere: Global MHD simulation results compared with Polar and SNOE observations. Ann Geophys 24(3): 861–872. https://doi.org/10.5194/angeo-24-861-2006. [CrossRef] [Google Scholar]
- Papitashvili NE, King JH. 2020. OMNI 5-min Data Set [Data set]. NASA Space Physics Data Facility. https://doi.org/10.48322/gbpg-5r77. [Google Scholar]
- Pfau-Kempf Y, Palmroth M, Johlander A, Turc L, Alho M, Battarbee M, Dubart M, Grandin M, Ganse U. 2020. Hybrid-Vlasov modeling of three-dimensional dayside magnetopause reconnection. Phys Plasmas 27(9): 092,903. https://doi.org/10.1063/5.0020685. [CrossRef] [Google Scholar]
- Pfau-Kempf Y, von Alfthan S, Sandroos A, Ganse U, Koskela T, et al. 2022. fmihpc/vlasiator: Vlasiator. Zenodo. https://doi.org/10.5281/ZENODO.3640593, https://zenodo.org/record/3640593. [Google Scholar]
- Ptitsyna NG, Kasinskii VV, Villoresi G, Lyahov NN, Dorman LI, Iucci N. 2008. Geomagnetic effects on mid-latitude railways: A statistical study of anomalies in the operation of signaling and train control equipment on the East-Siberian Railway. Adv Space Res 42(9): 1510–1514. https://doi.org/10.1016/j.asr.2007.10.015. [CrossRef] [Google Scholar]
- Qiu H-X, Han D-S, Zhang H-D, Yang H-G, Feng H-T, Yu X, Shi R, Zhou S, Zhang YL. 2022. A comparative study on the factors controlling the cusp auroral intensity between the Northern and Southern hemispheres. J Geophys Res (Space Phys) 127(4): e30,216. https://doi.org/10.1029/2021JA030216. [Google Scholar]
- Redmon RJ, Denig WF, Kilcommons LM, Knipp DJ. 2017. New DMSP database of precipitating auroral electrons and ions. J Geophys Res (Space Phys) 122(8): 9056–9067. https://doi.org/10.1002/2016JA023339. [CrossRef] [Google Scholar]
- Rosenqvist L, Hall JO. 2019. Regional 3-D modeling and verification of geomagnetically induced currents in Sweden. Space Weather 17(1): 27–36. https://doi.org/10.1029/2018SW002084. [CrossRef] [Google Scholar]
- Runov A, Grandin M, Palmroth M, Battarbee M, Ganse U, et al. 2021. Ion distribution functions in magnetotail reconnection: global hybrid-Vlasov simulation results. Ann Geophys 39(4): 599–612. https://doi.org/10.5194/angeo-39-599-2021. [CrossRef] [Google Scholar]
- Saikin AA, Zhang JC, Allen RC, Smith CW, Kistler LM, Spence HE, Torbert RB, Kletzing CA, Jordanova VK. 2015. The occurrence and wave properties of H+-, He+-, and O+-band EMIC waves observed by the Van Allen Probes. J Geophys Res (Space Phys) 120(9): 7477–7492. https://doi.org/10.1002/2015JA021358. [CrossRef] [Google Scholar]
- Sergeev VA, Sazhina EM, Tsyganenko NA, Lundblad JA, Soraas F. 1983. Pitch-angle scattering of energetic protons in the magnetotail current sheet as the dominant source of their isotropic precipitation into the nightside ionosphere. Planet Space Sci 31: 1147–1155. https://doi.org/10.1016/0032-0633(83)90103-4. [CrossRef] [Google Scholar]
- Sergeev VA, Tsyganenko NA. 1982. Energetic particle losses and trapping boundaries as deduced from calculations with a realistic magnetic field model. Planet Space Sci 30: 999–1006. https://doi.org/10.1016/0032-0633(82)90149-0. [CrossRef] [Google Scholar]
- Shreedevi PR, Yu Y, Ni B, Saikin A, Jordanova VK. 2021. Simulating the ion precipitation from the inner magnetosphere by H Band and He Band Electro Magnetic Ion Cyclotron Waves. J Geophys Res (Space Phys) 126(3): e28,553. https://doi.org/10.1029/2020JA028553. [Google Scholar]
- Simon C, Lilensten J, Moen J, Holmes JM, Ogawa Y, Oksavik K, Denig WF. 2007. TRANS4: a new coupled electron/proton transport code – comparison to observations above Svalbard using ESR. DMSP and optical measurements. Ann Geophys 25(3): 661–673. https://doi.org/10.5194/angeo-25-661-2007. [CrossRef] [Google Scholar]
- Søraas F, Sandanger MI, Smith-Johnsen C. 2018. NOAA POES and MetOp particle observations during the 17 March 2013 storm. J Atmos Solar-Terr Phys 177: 115–124. https://doi.org/10.1016/j.jastp.2017.09.004. [CrossRef] [Google Scholar]
- Spanswick E, Donovan E, Kepko L, Angelopoulos V. 2017. The magnetospheric source region of the bright proton aurora. Geophys Res Lett 44(20): 10094–10099. https://doi.org/10.1002/2017GL074956. [Google Scholar]
- Streltsov AV, Lotko W. 2004. Multiscale electrodynamics of the ionosphere-magnetosphere system. J Geophys Res (Space Phys) 109(A9): A09,214. https://doi.org/10.1029/2004JA010457. [Google Scholar]
- Suni J, Palmroth M, Turc L, Battarbee M, Johlander A, et al. 2021. Connection between foreshock structures and the generation of magnetosheath jets: Vlasiator results. Geophys Res Lett 48(20): e95,655. https://doi.org/10.1029/2021GL095655. [CrossRef] [Google Scholar]
- Tan B, Lin Y, Perez JD, Wang XY. 2012. Global-scale hybrid simulation of cusp precipitating ions associated with magnetopause reconnection under southward IMF. J Geophys Res (Space Phys) 117(A3): A03,217. https://doi.org/10.1029/2011JA016871. [Google Scholar]
- Tian S. 2022. The geopack and Tsyganenko models in Python [Software] Available from https://pypi.org/project/geopack/. [Google Scholar]
- Tian X, Yu Y, Yue C. 2020. Statistical survey of storm-time energetic particle precipitation. J Atmos Sol-Terr Phys 199, 105204. https://doi.org/10.1016/j.jastp.2020.105204. [CrossRef] [Google Scholar]
- Tsurutani BT, Hajra R. 2021. The Interplanetary and Magnetospheric causes of Geomagnetically Induced Currents (GICs) > 10 A in the Mäntsälä Finland Pipeline: 1999 through 2019. J Space Weather Space Clim 11: 23. https://doi.org/10.1051/swsc/2021001. [CrossRef] [EDP Sciences] [Google Scholar]
- Tsyganenko NA. 1982. Pitch-angle scattering of energetic particles in the current sheet of the magnetospheric tail and stationary distribution functions. Planet Space Sci 30: 433–437. https://doi.org/10.1016/0032-0633(82)90052-6. [CrossRef] [Google Scholar]
- Tsyganenko NA. 2002a. A model of the near magnetosphere with a dawn-dusk asymmetry 1. Mathematical structure. J Geophys Res (Space Phys) 107(A8): 1179. https://doi.org/10.1029/2001JA000219. [Google Scholar]
- Tsyganenko NA. 2002b. A model of the near magnetosphere with a dawn-dusk asymmetry 2. Parameterization and fitting to observations. J Geophys Res (Space Phys) 107(A8): 1176. https://doi.org/10.1029/2001JA000220. [Google Scholar]
- Turc L, Roberts OW, Archer MO, Palmroth M, Battarbee M, et al. 2019. First observations of the disruption of the Earth’s foreshock wave field during magnetic clouds. Geophys Res Lett 46(22): 12644–12653. https://doi.org/10.1029/2019GL084437. [CrossRef] [Google Scholar]
- Usanova ME, Mann IR, Bortnik J, Shao L, Angelopoulos V. 2012. THEMIS observations of electromagnetic ion cyclotron wave occurrence: Dependence on AE, SYMH, and solar wind dynamic pressure. J Geophys Res (Space Phys) 117(A10): A10,218. https://doi.org/10.1029/2012JA018049. [Google Scholar]
- Workayehu AB, Vanhamäki H, Aikio AT, Shepherd SG. 2021. Effect of interplanetary magnetic field on hemispheric asymmetry in ionospheric horizontal and field-aligned currents during different seasons. J Geophys Res (Space Phys) 126(10): e29,475. https://doi.org/10.1029/2021JA029475. [Google Scholar]
- Yahnin AG, Popova TA, Demekhov AG, Lubchich AA, Matsuoka A, et al. 2021. Evening side EMIC waves and related proton precipitation induced by a substorm. J Geophys Res (Space Phys) 126(7): e29,091. https://doi.org/10.1029/2020JA029091. [Google Scholar]
- Yue C, Jun C-W, Bortnik J, An X, Ma Q, et al. 2019. The relationship between EMIC wave properties and proton distributions based on Van Allen probes observations. Geophys Res Lett 46(8): 4070–4078. https://doi.org/10.1029/2019GL082633. [CrossRef] [Google Scholar]
- Zhang B, Brambles O, Lotko W, Dunlap-Shohl W, Smith R, Wiltberger M, Lyon J. 2013. Predicting the location of polar cusp in the Lyon-Fedder-Mobarry global magnetosphere simulation. J Geophys Res (Space Phys) 118(10): 6327–6337. https://doi.org/10.1002/jgra.50565. [CrossRef] [Google Scholar]
- Zhou XW, Russell CT, Le G, Fuselier SA, Scudder JD. 2000. Solar wind control of the polar cusp at high altitude. J Geophys Res 105(A1): 245–252. https://doi.org/10.1029/1999JA900412. [CrossRef] [Google Scholar]
- Zhu M, Yu Y, Tian X, Shreedevi PR, Jordanova VK. 2021. On the Ion Precipitation due to Field Line Curvature (FLC) and EMIC Wave Scattering and Their Subsequent Impact on Ionospheric Electrodynamics. J Geophys Res (Space Phys) 126(3): e28,812. https://doi.org/10.1029/2020JA028812. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.