Open Access
Issue |
J. Space Weather Space Clim.
Volume 13, 2023
|
|
---|---|---|
Article Number | 21 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/swsc/2023019 | |
Published online | 10 August 2023 |
- Allen DR, Hodyss D, Forsythe VV, McDonald SE. 2023. Low latitude monthly total electron composite correlations. J Space Weather Space Clim 13: 7. https://doi.org/10.1051/swsc/2023005. [CrossRef] [EDP Sciences] [Google Scholar]
- Bergot N, Tsagouri I, Bruyninx C, Legrand J, Chevalier J-M, Defraigne P, Baire Q, Pottiaux E. 2013. The influence of space weather on ionospheric total electron content during the 23rd solar cycle. J Space Weather Space Clim 3: A25. https://doi.org/10.1051/swsc/2013047. [CrossRef] [EDP Sciences] [Google Scholar]
- Bishop CH, Etherton BJ, Majumdar SJ. 2001. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon Wea Rev 129: 420–436. https://doi.org/10.1175/1520-0493(2001)129 %3C0420:ASWTET%3E2.0.CO;2. [CrossRef] [Google Scholar]
- Chamberlin PC, Woods TN, Eparvier FG. 2008. Flare Irradiance Spectral Model (FISM): Flare component algorithms and results. Space Weather 6: S05001. https://doi.org/10.1029/2007SW000372. [Google Scholar]
- Codrescu SM, Codrescu MV, Fedrizzi M. 2018. An ensemble Kalman filter for the thermosphere-ionosphere. Space Weather 16: 57–68. https://doi.org/10.1002/2017SW001752. [Google Scholar]
- Drob DP, Emmert JT, Meriwether JW, Makela JJ, Doornbos E, Conde M, Hernandez G, Noto J, Zawdie KA, McDonald SE, Huba JD, Klenzing JH. 2015. An update to the Horizontal Wind Model (HWM): The quiet time thermosphere. Earth Space Sci 2(7): 301–319. https://doi.org/10.1002/2014ea000089. [CrossRef] [Google Scholar]
- Fang T-W, Fuller-Rowell T, Yudin V, Matsuo T, Viereck R. 2018. Quantifying the sources of ionosphere day-to-day variability. J Geophys Res: Space Phys 123: 9682–9696. https://doi.org/10.1029/2018JA025525. [Google Scholar]
- Forsythe VV, Azeem I, Crowley G. 2020a. Ionospheric horizontal correlation distances: Estimation, analysis, and implications for ionospheric data assimilation. Rad Sci 55: e2020RS007159. https://doi.org/10.1029/2020RS007159. [Google Scholar]
- Forsythe VV, Azeem I, Crowley G, Makarevich RA, Wang C. 2020b. The global analysis of the ionospheric correlation time and its implications for ionospheric data assimilation. Rad Sci 55: e2020RS007181. https://doi.org/10.1029/2020RS007181. [Google Scholar]
- Forsythe VV, Azeem I, Blay R, Crowley G, Gasperini F, et al. 2021. Evaluation of the new background covariance model for the ionospheric data assimilation. Rad Sci 56: e2021RS007286. https://doi.org/10.1029/2021RS007286. [Google Scholar]
- Huba JD, Joyce G, Fedder JA. 2000. Sami2 is Another Model of the Ionosphere (SAMI2): A new low-latitude ionosphere model. J Geophys Res: Space Phys 105(A10): 23035–23053. https://doi.org/10.1029/2000JA000035. [Google Scholar]
- Matsuo T, Lee I, Anderson JL. 2013. Thermospheric mass density specification using an ensemble Kalman filter. J Geophys Res: Space Phys 118: 1339–1350. https://doi.org/10.1002/jgra.50162. [CrossRef] [Google Scholar]
- McNamara LF, Wilkinson PJ. 2009. Spatial correlations of foF2 deviations and their implications for global ionospheric models: 1. Ionosondes in Australia and Papua New Guinea. Rad Sci 44: RS2016. https://doi.org/10.1029/2008RS003955. [Google Scholar]
- Morozov AV, Ridley AJ, Bernstein DS, Collins N, Hoar TJ, Anderson JL. 2013. Data assimilation and driver estimation for the global ionosphere-thermosphere model using the ensemble adjustment Kalman filter. J Atmos Sol-Terr Phys 104: 126–136. https://doi.org/10.1016/j.jastp.2013.08.016. [CrossRef] [Google Scholar]
- Picone JM, Hedin AE, Drob DP, Aikin AC. 2002. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J Geophys Res 107(A12): 1468. https://doi.org/10.1029/2002JA009430. [Google Scholar]
- Reid B, Themens DR, McCaffrey AM, Jayachandran PT, Johnsen MG, Ulich T. 2022. A-CHAIM: Near-real-time data assimilation of the high latitude ionosphere with a particle filter. Space Weather 21: e2022SW003185. https://doi.org/10.1002/essoar.10511639.1. [Google Scholar]
- Richards PG, Fennelly JA, Torr DG. 1994. EUVAC: A solar EUV flux model for aeronomic calculations. J Geophys Res 99: 8981. https://doi.org/10.1029/94JA00518. [CrossRef] [Google Scholar]
- Rishbeth H, Mendillo M. 2001. Patterns of F2-layer variability. J Atmos Sol-Terr Phys 63: 1661–1680. https://doi.org/10.1016/S1364-6826(01)00036-0. [Google Scholar]
- Schmölter EJ, Bedermann M Codrescu. 2021. The delayed ionospheric response to the 27-day solar rotation period analyzed with GOLG and IGS TEC data. J Geophys Res: Space Phys 126: e2020JA028861. https://doi.org/10.1029/2020JA028861. [CrossRef] [Google Scholar]
- Siscoe G, Solomon SC. 2006. Aspects of data assimilation peculiar to space weather forecasting. Space Weather 4: S04002. https://doi.org/10.1029/2005SW000205. [Google Scholar]
- Solomentsev DV, Khattatov BV, Codrescu M, Titov AA, Yudin V, Khattatov VU. 2012. Ionosphere state and parameter estimation using the Ensemble Square Root Filter and the global three-dimensional first-principle model. Space Weather 10: S07004. https://doi.org/10.1029/2012SW000777. [Google Scholar]
- Vaishnav R, Jacobi C, Berdermann J, Codrescu M, Schmölter E. 2021a. Role of Eddy diffusion in the delayed ionospheric response to solar flux changes. Ann Geophys 39: 641–655. https://doi.org/10.5194/angeo-39-641-2021. [CrossRef] [Google Scholar]
- Vaishnav R, Schmölter E, Jacobi C, Berdermann J, Codrescu M. 2021b. Ionospheric response to solar extreme ultraviolet radiation variations: Comparisons based on CTIPe model simulations and satellite measurements. Ann Geophys 39: 341–355. https://doi.org/10.5194/angeo-39-341-2021. [CrossRef] [Google Scholar]
- van Leeuwen PJ. 2020. A consistent interpretation of the stochastic version of the ensemble Kalman filter. Quart J Roy Met Soc 146: 2815–2825. https://doi.org/10.1002/qj.3819. [CrossRef] [Google Scholar]
- Wang X, Bishop CH, Julier SJ. 2004. Which is better, an ensemble of positive-negative pairs or a centered spherical simplex ensemble? Mon Wea Rev 132: 1590–1605. https://doi.org/10.1175/1520-0493(2004)132 %3C1590:WIBAEO%3E2.0.CO;2. [CrossRef] [Google Scholar]
- Zawdie KA, Dhadly MS, McDonald SE, Sassi F, Coker C, Drob D. 2020. Day-to-day variability of the bottomside ionosphere. J Atmos Sol-Terr Phys 205: 105299. https://doi.org/10.1016/j.jastp.2020.105299. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.