Open Access
Issue |
J. Space Weather Space Clim.
Volume 13, 2023
|
|
---|---|---|
Article Number | 30 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/swsc/2023028 | |
Published online | 13 December 2023 |
- Adachi K, Nozawa S, Ogawa Y, Brekke A, Hall C, Fujii R. 2017. Evaluation of a method to derive ionospheric conductivities using two auroral emissions (428 and 630 nm) measured with a photometer at Tromsø (69.6 N). Earth Planets Space 69(1): 1–19. https://doi.org/10.1186/s40623-017-0677-4. [NASA ADS] [CrossRef] [Google Scholar]
- Barthelemy M, Kalegaev V, Vialatte A, Le Coarer E, Kerstel E, et al. 2018. AMICal Sat and ATISE: two space missions for auroral monitoring. J Space Weather Space Clim 8: A44. https://doi.org/10.1051/swsc/2018035. [CrossRef] [EDP Sciences] [Google Scholar]
- Bilitza D, Reinisch BW. 2008. International reference ionosphere 2007: Improvements and new parameters. Adv Space Res 42(4): 599–609. [CrossRef] [Google Scholar]
- Brändström U. 2003. Auroral large imaging system—design, operation and scientific results, IRF Scientific Rep., p. 279. [Google Scholar]
- Dahlgren H, Gustavsson B, Lanchester BS, Ivchenko N, Brändström U, Whiter DK, Sergienko T, Sandahl I, Marklund G. 2011. Energy and flux variations across thin auroral arcs. Ann Geophys 29(10): 1699–1712. https://doi.org/10.5194/angeo-29-1699-2011. [CrossRef] [Google Scholar]
- Davis P, Rabinowitz P, Rheinbolt W. 2014. Methods of numerical integration. Computer science and applied mathematics. Elsevier Science. ISBN 9781483264288. https://books.google.fr/books?id=mbLiBQAAQBAJ. [Google Scholar]
- Del Pozo C, Hargreaves J, Aylward A. 1997. Ion composition and effective ion recombination rate in the nighttime auroral lower ionosphere. J Atmos Sol Terr Phys 59(15): 1919–1943. https://doi.org/10.1016/S1364-6826(97)00033-3. [CrossRef] [Google Scholar]
- Gustavsson B. 2000. Three dimensional imaging of aurora and airglow. PhD Thesis. Available at https://www2.irf.se/bjorn/thesis/thesis.html. [Google Scholar]
- Kosch M, Honary F, Del Pozo C, Marple S, Hagfors T. 2001. High-resolution maps of the characteristic energy of precipitating auroral particles. J Geophys Res Space Phys 106(A12): 28925–28937. https://doi.org/10.1029/2001JA900107. [CrossRef] [Google Scholar]
- Lanchester B, Palmer J, Rees M, Lummerzheim D, Kaila K, Turunen T. 1994. Energy flux and characteristic energy of an elemental auroral structure. Geophys Res Lett 21(25): 2789–2792. https://doi.org/10.1029/94GL01764. [CrossRef] [Google Scholar]
- Lanchester B, Rees M, Lummerzheim D, Otto A, Frey H, Kaila K. 1997. Large fluxes of auroral electrons in filaments of 100 m width. J Geophys Res Space Phys 102(A5): 9741–9748. https://doi.org/10.1029/97JA00231. [CrossRef] [Google Scholar]
- Lilensten J, Blelly P. 2002. The TEC and F2 parameters as tracers of the ionosphere and thermosphere. J Atmos Sol Terr Phys 64(7): 775–793. https://doi.org/10.1016/S1364-6826(02)00079-2. [CrossRef] [Google Scholar]
- Lummerzheim D, Lilensten J. 1994. Electron transport and energy degradation in the ionosphere: Evaluation of the numerical solution, comparison with laboratory experiments and auroral observations. Ann Geophys 12(10): 1039–1051. https://doi.org/10.1007/s00585-994-1039-7. [CrossRef] [Google Scholar]
- Picone JM, Hedin AE, Drob DP, Aikin AC. 2002. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. Geophys Res Space Phys 107(A12): 10–1468. https://doi.org/10.1029/2002JA009430. [Google Scholar]
- Sergienko T, Ivanov V. 1993. A new approach to calculate the excitation of atmospheric gases by auroral electron impact. Ann Geophys 11: 717–727. [Google Scholar]
- Simon Wedlund C, Lamy TSH, Gustavsson B, Brandstrom U. 2013. Estimating energy spectra of electron precipitation above auroral arcs from ground-based observations with radar and optics. J Geophys Res Space Phys 118(6): 3672–3691. https://doi.org/10.1002/jgra.50347. [CrossRef] [Google Scholar]
- Stamnes K, Tsay S-C, Wiscombe W, Jayaweera K. 1988. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl Opt 27(12): 2502–2509. [CrossRef] [Google Scholar]
- Vialatte A. 2017. Effets des entrees energetiques sur les composes azotes dans la haute atmosphere terrestre. PhD Thesis. Available at https://hal.inria.fr/tel-01755768/. [Google Scholar]
- Witasse O.. 2000. Modelisation de ionospheres planetaires et de leur rayonnement: La Terre et Mars. Master’s Thesis. Available at https://theses.hal.science/tel-00010537. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.