Open Access
Issue |
J. Space Weather Space Clim.
Volume 13, 2023
Topical Issue - Space Climate: Long-term effects of solar variability on the Earth’s environment
|
|
---|---|---|
Article Number | 31 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/swsc/2023030 | |
Published online | 22 December 2023 |
- Baillie MGL, Pilcher JR. 1973. A simple crossdating program for tree-ring research. Tree-Ring Bull. 33: 7–14. [Google Scholar]
- Beggan CD, Eaton E, Maume E, Clarke E, Williamson J, et al. 2023. Digitizing UK analogue magnetogram records from large geomagnetic storms of the past two centuries. Geosci Data J 10: 73–86. https://doi.org/10.1002/gdj3.151. [CrossRef] [Google Scholar]
- Brehm N, Bayliss A, Christl M, Synal H-A, Adolphi F, et al. 2021. Eleven-year solar cycles over the last millennium revealed by radiocarbon in tree rings. Nat Geosci 14: 10–15. https://doi.org/10.1038/s41561-020-00674-0. [CrossRef] [Google Scholar]
- Brehm N, Christl M, Knowles TDJ, Casanova E, Evershed RP, et al. 2022. Tree-rings reveal two strong solar proton events in 7176 and 5259 BCE. Nat Commun 13: 1196. https://doi.org/10.1038/s41467-022-28804-9. [CrossRef] [Google Scholar]
- Chapman S, Bartels J. 1940. Geomagnetism, Vol. I: Geomagnetic and Related Phenomena. Oxford University Press, London. https://ui.adsabs.harvard.edu/abs/1940gm1.book.C/abstract. [Google Scholar]
- Clette F, Lefèvre L. 2016. The new sunspot number: assembling all corrections. Sol Phys 291: 2629–2651. https://doi.org/10.1007/s11207-016-1014-y. [CrossRef] [Google Scholar]
- Clette F, Lefèvre L, Chatzistergos T, Hayakawa H, Carrasco VMS, et al. 2023. Recalibration of the sunspot-number: status report. Sol Phys 298: 44. https://doi.org/10.1007/s11207-023-02136-3. [CrossRef] [Google Scholar]
- Cliver EW, Dietrich WF. 2013. The 1859 space weather event revisited: limits of extreme activity. J Space Weather Space Clim 3: A31. https://doi.org/10.1051/swsc/2013053. [Google Scholar]
- Cliver EW, Hayakawa H, Love JJ, Neidig DF. 2020. On the size of the flare associated with the solar proton event in 774 AD. ApJ 903: 41. https://doi.org/10.3847/1538-4357/abad93. [CrossRef] [Google Scholar]
- Cliver EW, Schrijver CJ, Shibata K, Usoskin IG. 2022. Extreme solar events. Living Rev Sol Phys 19: 2. https://doi.org/10.1007/s41116-022-00033-8. [CrossRef] [Google Scholar]
- Golubenko K, Rozanov E, Kovaltsov G, Usoskin I. 2022. Zonal mean distribution of cosmogenic isotope (7Be, 10Be, 14C, and 36Cl) production in stratosphere and troposphere. J Geophys Res Atmos 127: e2022JD036726. https://doi.org/10.1029/2022JD036726. [CrossRef] [Google Scholar]
- Gopalswamy N. 2018. Chapter 2 – Extreme solar eruptions and their space weather consequences. In: Extreme Events in Geospace: Origins, Predictability, and Consequences. Buzulukova N, (Ed.) Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-812700-1.00002-9. [Google Scholar]
- Hakozaki M, Nakamura T. 2013. Tree-ring dating and dendroprovenancing of the imported Spruce woods. Bull. Nagoya Univ. Museum No. 29, 1–11, in Japanese. https://doi.org/10.18999/bulnum.029.01. [Google Scholar]
- Hapgood M, Angling MJ, Attrill G, Bisi M, Cannon PS, et al. 2021. Development of space weather reasonable worst case scenarios for the UK National Risk Assessment. Space Weather 19: e2020SW002593. https://doi.org/10.1029/2020SW002593. [CrossRef] [Google Scholar]
- Hathaway DH. 2015. The solar cycle. Living Rev Sol Phys 12: 4. https://doi.org/10.1007/lrsp-2015-4. [CrossRef] [Google Scholar]
- Hattori K, Hayakawa H, Ebihara Y. 2019. Occurrence of great magnetic storms on 6–8 March 1582. Mon Not R Astron Soc 487(3): 3550–3559. https://doi.org/10.1093/mnras/stz1401. [CrossRef] [Google Scholar]
- Hayakawa H, Tamazawa H, Uchiyama Y, Ebihara Y, Miyahara H. 2017a. Historical aurora evidences for great magnetic storms in 990s. Sol Phys 292: 12. https://doi.org/10.1007/s11207-016-1039-2. [CrossRef] [Google Scholar]
- Hayakawa H, Iwahashi K, Ebihara Y, Tamazawa H, Shibata K, et al. 2017b. Long-lasting extreme magnetic storm activities in 1770 found in historical documents. Astrophys J Lett 850: L31. https://doi.org/10.3847/2041-8213/aa9661. [CrossRef] [Google Scholar]
- Hayakawa H, Ebihara Y, Willis DM, Toriumi S, Iju T, et al. 2019a. Temporal and spatial evolutions of a large sunspot group and great auroral storms around the Carrington Event in 1859. Space Weather 17: 1553–1569. https://doi.org/10.1029/2019SW002269. [CrossRef] [Google Scholar]
- Hayakawa H, Mitsuma Y, Ebihara Y, Miyake F. 2019b. The earliest candidates of auroral observations in Assyrian Astrological Reports: Insights on solar activity around 660 BCE. Astrophys J Lett 884: L18. https://doi.org/10.3847/2041-8213/ab42e4. [CrossRef] [Google Scholar]
- Hayakawa H, Ebihara Y, Cliver EW, Hattori K, Toriumi S, et al. 2019c. The extreme space weather event in September 1909. Mon Not R Astron Soc 484: 4083–4099. https://doi.org/10.1093/mnras/sty3196. [CrossRef] [Google Scholar]
- Hayakawa H, Ribeiro P, Vaquero JM, Gallego MC, Knipp DJ, et al. 2020. The extreme space weather event in 1903 October/November: An outburst from the quiet Sun. Astrophys J Lett 897: L10. https://doi.org/10.3847/2041-8213/ab6a18. [CrossRef] [Google Scholar]
- Hayakawa H, Nevanlinna H, Blake SP, Ebihara Y, Bhaskar AT, et al. 2022a. Temporal variations of the three geomagnetic field components at Colaba Observatory around the Carrington Storm in 1859. Astrophys J 928: 32. https://doi.org/10.3847/1538-4357/ac2601. [CrossRef] [Google Scholar]
- Hayakawa H, Bechet S, Clette F, Hudson H, Maehara H, et al. 2023a. Magnitude estimates for the Carrington Flare in 1859 September: as seen from the original records. Astrophys J Lett 954: L3. https://doi.org/10.3847/2041-8213/acd853. [CrossRef] [Google Scholar]
- Hayakawa H, Cliver EW, Clette F, Ebihara Y, Toriumi S, et al. 2023b. The extreme space weather event of February 1872: Sunspots, magnetic disturbance, and auroral displays. ApJ 959: 23. https://doi.org/10.3847/1538-4357/acc6cc. [CrossRef] [Google Scholar]
- Hudson HS. 2021. Carrington events. Annu Rev Astron Astrophys 59: 445–477. https://doi.org/10.1146/annurev-astro-112420-023324. [CrossRef] [Google Scholar]
- Kagawa A, Sugimoto A, Maximov TC. 2006. 13CO2 pulse-labelling of photoassimilates reveals carbon allocation within and between tree rings. Plant Cell Environ 29(8): 1571–1584. PMID: 16898018. https://doi.org/10.1111/j.1365-3040.2006.01533.x. [CrossRef] [Google Scholar]
- Kitagawa H, Mukai H, Nojiri Y, Shibata Y, Kobayashi T, et al. 2004. Seasonal and secular variations of atmospheric 14CO2 over the Western Pacific since 1994. Radiocarbon 46(2): 901–910. [CrossRef] [Google Scholar]
- Koldobskiy S, Usoskin I, Kovaltsov GA. 2022. Effective energy of cosmogenic isotope (10Be, 14C and 36Cl) production by solar energetic particles and galactic cosmic rays. J Geophys Res Space Phys 127: e2021JA029919. https://doi.org/10.1029/2021JA029919. [CrossRef] [Google Scholar]
- Kovaltsov GA, Usoskin IG, Cliver EW, Dietrich WF, Tylka AJ. 2014. Fluence ordering of solar energetic proton events using cosmogenic radionuclide data. Sol Phys 289: 4691–4700. https://doi.org/10.1007/s11207-014-0606-7. [CrossRef] [Google Scholar]
- Kusano K. 2023. Solar-terrestrial environmental prediction. Springer Nature Singapore, Singapore. [CrossRef] [Google Scholar]
- Lakhina GS, Alex S, Tsurutani BT, Gonzalez WD. 2012. Supermagnetic storms: Hazard to Society. In: Extreme events and natural hazards: the complexity perspective. Sharma AS, Bunde A, Dimri VP, Baker DN (Eds.), American Geophysical Union, Washington, DC. https://doi.org/10.1029/2011GM001073. [Google Scholar]
- Leuenberger M, Levin I, Hammer S. 2018. Long-term observations of 14CO2 at Jungfraujoch. Activity Report 2018. International Foundation HFSJG. [Google Scholar]
- Levin I, Naegler T, Kromer B, Diehl M, Francey RJ, et al. 2010. Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2. Tellus B Chem Phys Meteorol 62(1): 26–46. https://doi.org/10.1111/j.1600-0889.2009.00446.x. [CrossRef] [Google Scholar]
- Machol J, Viereck R, Peck C, Mothersbaugh J III. 2022. GOES X-ray Sensor (XRS) Operational Data (Version 1.5). Stennis Space Center, NOAA. [Google Scholar]
- McDonald L, Chivall D, Miles D, Bronk Ramsey C. 2019. Seasonal variations in the 14C content of tree rings: influences on radiocarbon calibration and single-year curve construction. Radiocarbon 61(1): 185–194. https://doi.org/10.1017/RDC.2018.64. [CrossRef] [Google Scholar]
- Mekhaldi F, Muscheler R, Adolphi F, Aldahan A, Beer J, et al. 2015. Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/4. Nat Commun 6(1): 8611. https://doi.org/10.1038/ncomms9611. [CrossRef] [Google Scholar]
- Miyake F, Nagaya K, Masuda K, Nakamura T. 2012. A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature 486(7402): 240–242. https://doi.org/10.1038/nature11123. [NASA ADS] [CrossRef] [Google Scholar]
- Miyake F, Masuda K, Nakamura T. 2013. Another rapid event in the carbon-14 content of tree rings. Nat Commun 4(1): 1748. https://doi.org/10.1038/ncomms287310.1038/ncomms2783. [CrossRef] [Google Scholar]
- Miyake F, Suzuki A, Masuda K, Horiuchi K, Motoyama H, et al. 2015. Cosmic ray event of A.D. 774–775 shown in quasi-annual 10Be Data from the Antarctic Dome Fuji Ice Core. Geophys Res Lett 42: 84–89. https://doi.org/10.1002/2014GL062218. [CrossRef] [Google Scholar]
- Miyake F, Usoskin IG, Poluianov S (Eds.). 2019. Extreme Solar Particle Storms. IOP Publishing, Bristol, United Kingdom. https://doi.org/10.1088/2514-3433/ab404a. [CrossRef] [Google Scholar]
- Miyake F, Panyushkina IP, Jull AJT, Adolphi F, Brehm N, et al. 2021. A single-year cosmic ray event at 5410 BCE registered in 14C of tree rings. Geophys Res Lett 48: e2021GL093419. https://doi.org/10.1029/2021GL093419. [CrossRef] [Google Scholar]
- Miyahara H, Tokanai F, Moriya T, Takeyama M, Sakurai H, et al. 2022. Recurrent large-scale solar proton events before the onset of the Wolf Grand solar minimum. Geophys. Res. Lett. 49: e2021GL097201. https://doi.org/10.1029/2021gl097201. [CrossRef] [Google Scholar]
- O’Hare P, Mekhaldi F, Adopphi F, Raisbeck G, Aldahan A, et al. 2019. Multiradionuclide evidence for an extreme solar proton event around 2,610 B.P. (~660 BC). Proc Natl Acad. Sci 116: 5961–5966. https://doi.org/10.1073/pnas.181572511. [CrossRef] [Google Scholar]
- Owens MJ, Barnard LA, Pope BJS, Lockwood M, Usoskin I, et al. 2022. Solar energetic-particle ground-level enhancements and the solar cycle. Sol Phys 297: 105. https://doi.org/10.1007/s11207-022-02037-x. [CrossRef] [Google Scholar]
- Paleari CI, Mekhaldi F, Adolphi F, Christl M, Vockenhuber C, et al. 2022. Cosmogenic radionuclides reveal an extreme solar particle storm near a solar minimum 9125 years BP. Nat Commun 13: 214. https://doi.org/10.1038/s41467-021-27891-4. [CrossRef] [Google Scholar]
- Park J, Southon J, Fahrni S, Creasman PP, Mewaldt R. 2017. Relationship between solar activity and Δ14C peaks in AD 775, AD 994, and 660 BC. Radiocarbon 59: 1147–1156. https://doi.org/10.1017/RDC.2017.59. [CrossRef] [Google Scholar]
- Riley P, Baker D, Liu YD, Verronen P, Singer H, Güdel M. 2018. Extreme space weather events: from cradle to grave. Space Sci Rev 214: 21. https://doi.org/10.1007/s11214-017-0456-3. [CrossRef] [Google Scholar]
- Scifo A, Kuitems M, Neocleous A, Pope BJS, Miles D, et al. 2019. Radiocarbon production events and their potential relationship with the Schwabe Cycle. Sci Rep 9: 17056. https://doi.org/10.1038/s41598-019-53296-x. [CrossRef] [Google Scholar]
- Siegenthaler U, Heimann M, Oeschger H. 1980. 14C variations caused by changes in the global carbon cycle. Radiocarbon 22(2): 177–191. https://doi.org/10.1017/S0033822200009449. [CrossRef] [Google Scholar]
- Silverman SM. 2008. Low-latitude auroras: The great aurora of 4 February 1872. J Atmos Sol-Terr Phys 70: 1301–1308. https://doi.org/10.1016/j.jastp.2008.03.012. [CrossRef] [Google Scholar]
- Sookdeo A, Kromer B, Büntgen U, Friedrich M, Friedrich R, et al. 2020. Quality dating: a well-defined protocol implemented at ETH for high-precision 14C-dates tested on late glacial wood. Radiocarbon 62(4): 891–899. https://doi.org/10.1017/RDC.2019.132. [CrossRef] [Google Scholar]
- Stuiver M, Quay PD. 1981. Atmospheric 14C changes resulting from fossil fuel CO2 release and cosmic ray flux variability. Earth Planet Sci Lett 53: 349–362. [CrossRef] [Google Scholar]
- Stuiver M, Reimer PJ, Braziunas TF. 1998. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40(3): 1127–1151. https://doi.org/10.1017/S0033822200019172. [CrossRef] [Google Scholar]
- Suess HE. 1955. Radiocarbon concentration in modern wood. Science 122: 415. [CrossRef] [Google Scholar]
- Usoskin IG. 2023. A history of solar activity over millennia. Living Rev Sol Phys 20: 2. https://doi.org/10.1007/s41116-023-00036-z. [CrossRef] [Google Scholar]
- Usoskin IG, Kovaltsov GA. 2021. Mind the gap: New precise 14C data indicate the nature of extreme solar particle events. Geophys Res Lett 48: e94848. https://doi.org/10.1029/2021GL094848. [CrossRef] [Google Scholar]
- Usoskin I, Koldobskiy S, Kovaltsov GA, Gil A, Usoskina I, et al. 2020a. Revised GLE database: Fluences of solar energetic particles as measured by the neutron-monitor network since 1956. A&A 640: A17. https://doi.org/10.1051/0004-6361/202038272. [CrossRef] [EDP Sciences] [Google Scholar]
- Usoskin IG, Koldobskiy SA, Kovaltsov GA, Rozanov EV, Sukhodolov TV, et al. 2020b. Revisited reference solar proton event of 23 February 1956: Assessment of the cosmogenic-isotope method sensitivity to extreme solar events. J Geophys Res Space Phys 125: e27921. https://doi.org/10.1029/2020JA027921. [CrossRef] [Google Scholar]
- Usoskin IG, Koldobskiy SA, Poluianov SV, Raukunen O, Vainio R, et al. 2023. Consistency of the average flux of solar energetic particles over timescales of years to megayears. A&A 670: L22. https://doi.org/10.1051/0004-6361/202245810. [CrossRef] [EDP Sciences] [Google Scholar]
- Van der Sluijs MA, Hayakawa H. 2022. A candidate auroral report in the Bamboo Annals, indicating a possible extreme space weather event in the early 10th century BCE. Adv Space Res. https://doi.org/10.1016/j.asr.2022.01.010. [Google Scholar]
- Vaquero JM, Valente MA, Trigo RM, Ribeiro P, Gallego MC. 2008. The 1870 space weather event: Geomagnetic and auroral records. J Geophys Res Space Phys 113: A08230. https://doi.org/10.1029/2007JA012943. [CrossRef] [Google Scholar]
- Wacker L, Nemec M, Bourquin J. 2010. A revolutionary graphitisation system: fully automated, compact and simple. Nucl Instrum Methods Phys Res Sect B 268: 931–934. [CrossRef] [Google Scholar]
- WDC Kyoto, Nose M, Iyemori T, Sugiura M, Kamei T. 2015. Geomagnetic Dst Index. https://doi.org/10.17593/14515-74000. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.