Open Access
Issue |
J. Space Weather Space Clim.
Volume 13, 2023
|
|
---|---|---|
Article Number | 15 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/swsc/2023016 | |
Published online | 12 June 2023 |
- Ahluwalia HS, Xue SS. 1993. Atmospheric attenuation length for relativistic solar protons. Geophys Res Lett 20(10): 995–998. https://doi.org/10.1029/93GL01115. [CrossRef] [Google Scholar]
- Ajello M, Baldini L, Bastieri D, Bellazzini R, Berretta A, et al. 2021. First Fermi-LAT solar flare catalog. Astrophys J Suppl 252(2): 13. https://doi.org/10.3847/1538-4365/abd32e. [CrossRef] [Google Scholar]
- Asvestari E, Willamo T, Gil A, Usoskin IG, Kovaltsov GA, Mikhailov VV, Mayorov A. 2017. Analysis of Ground Level Enhancements (GLE): Extreme solar energetic particle events have hard spectra. Adv Space Res 60(4): 781–787. https://doi.org/10.1016/j.asr.2016.08.043. [CrossRef] [Google Scholar]
- Belov AV, Eroshenko EA, Kryakunova ON, Kurt VG, Yanke VG. 2010. Ground level enhancements of solar cosmic rays during the last three solar cycles. Geomagn Aeron 50: 21–33. https://doi.org/10.1134/S0016793210010032. [CrossRef] [Google Scholar]
- Bieber JW, Clem J, Evenson P, Pyle R, Sáiz A, Ruffolo D. 2013. Giant Ground Level Enhancement of relativistic solar protons on 2005 January 20. I. Spaceship Earth observations. Astrophys J 771(2): 92. https://doi.org/10.1088/0004-637X/771/2/92. [CrossRef] [Google Scholar]
- Bieber JW, Dröge W, Evenson PA, Pyle R, Ruffolo D, Pinsook U, Tooprakai P, Rujiwarodom M, Khumlumlert T, Krucker S. 2002. Energetic particle observations during the 2000 July 14 solar event. Astrophys J 567: 622–634. https://doi.org/10.1086/338246. [CrossRef] [Google Scholar]
- Bombardieri DJ, Duldig ML, Humble JE, Michael KJ. 2008. An improved model for relativistic solar proton acceleration applied to the 2005 January 20 and earlier events. Astrophys J 682: 1315–1327. https://doi.org/10.1086/589494. [CrossRef] [Google Scholar]
- Bombardieri DJ, Duldig ML, Michael KJ, Humble JE. 2006. Relativistic Proton Production during the 2000 July 14 Solar Event: The Case for Multiple Source Mechanisms. Astrophys J 644(1): 565–574. https://doi.org/10.1086/501519. [CrossRef] [Google Scholar]
- Bütikofer R. 2018. Ground-based measurements of energetic particles by neutron monitors. In: Solar particle radiation storms forecasting and analysis, vol. 444, Malandraki OE, Crosby NB, (Eds.), Springer, Astrophysics and Space Science Library, pp. 95–112. https://doi.org/10.1007/978-3-319-60051-2_6. [CrossRef] [Google Scholar]
- Cramp JL, Duldig ML, Flückiger EO, Humble JE, Shea MA, Smart DF. 1997a. The October 22, 1989, solar cosmic ray enhancement: An analysis of the anisotropy and spectral characteristics. J Geophys Res Space Phys 102(A11): 24237–24248. https://doi.org/10.1029/97JA01947. [CrossRef] [Google Scholar]
- Cramp JL, Duldig ML, Humble JE. 1997b. The effect of a distorted interplanetary magnetic field configuration on the December 7–8, 1982, ground level enhancement. J Geophys Res Space Phys 102(A3): 4919–4926. https://doi.org/10.1029/96JA03698. [CrossRef] [Google Scholar]
- Duggal SP. 1979. Relativistic solar cosmic rays. Rev Geophys Space Phys 17: 1021–1058. https://doi.org/10.1029/RG017i005p01021. [CrossRef] [Google Scholar]
- Gopalswamy N, Xie H, Yashiro S, Akiyama S, Mäkelä P, Usoskin IG. 2012. Properties of ground level enhancement events and the associated solar eruptions during solar cycle 23. Space Sci Rev 171: 23–60. https://doi.org/10.1007/s11214-012-9890-4. [CrossRef] [Google Scholar]
- Gopalswamy N, Yashiro S, Michalek G, Xie H, Mäkelä P, Vourlidas A, Howard RA. 2010. A catalog of halo coronal mass ejections from SOHO. Sun and Geosph 5(1): 7–16. [Google Scholar]
- Grechnev VV, Kurt VG, Chertok IM, Uralov AM, Nakajima H, et al. 2008. An extreme solar event of 20 January 2005: Properties of the flare and the origin of energetic particles. Solar Phys 252: 149–177. https://doi.org/10.1007/s11207-008-9245-1. [CrossRef] [Google Scholar]
- Hatton CJ. 1971. The neutron monitor. In: Progress in elementary particle and cosmic-ray physics X, Wilson J, Wouthuysen S, (Eds.), North Holland Publishing Co, Amsterdam, pp. 3–100. [Google Scholar]
- Ji E-Y, Moon Y-J, Park J. 2014. Forecast of solar proton flux profiles for well-connected events. J Geophys Res Space Phys 119(12): 9383–9394. https://doi.org/10.1002/2014JA020333. [CrossRef] [Google Scholar]
- Kahler SW, Ling AG. 2017. Characterizing solar energetic particle event profiles with two-parameter fits. Solar Phys 292(4): 59. https://doi.org/10.1007/s11207-017-1085-4. [CrossRef] [Google Scholar]
- Klein K-L, Masson S, Bouratzis C, Grechnev V, Hillaris A, Preka-Papadema P. 2014. The relativistic solar particle event of 2005 January 20: origin of delayed particle acceleration. A&A 572: A4. https://doi.org/10.1051/0004-6361/201423783. [CrossRef] [EDP Sciences] [Google Scholar]
- Klein K-L, Musset S, Vilmer N, Briand C, Krucker S, Battaglia AF, Dresing N, Palmroos C, Gary DE. 2022. The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona. A&A 663: A173. https://doi.org/10.1051/0004-6361/202243903. [CrossRef] [EDP Sciences] [Google Scholar]
- Kubo Y, Kataoka R, Sato T. 2015. Interplanetary particle transport simulation for warning system for aviation exposure to solar energetic particles. Earth Planet Space 67: 117. https://doi.org/10.1186/s40623-015-0260-9. [CrossRef] [Google Scholar]
- Lantos P, Fuller N. 2004. Semi-empirical model to calculate potential radiation exposure on board airplane during solar particle events. IEEE Trans Plasma Sci 32(4): 1468–1477. https://doi.org/10.1109/TPS.2004.830988. [CrossRef] [Google Scholar]
- Lopate C. 2006. Fifty years of ground level solar particle event observations. In: Solar eruptions and energetic particles, vol. 165 of AGU Monograph, Gopalswamy N, Mewaldt R, Torsti J, (Eds.), American Geophysical Union, Washington DC, pp. 283–296. https://doi.org/10.1029/165GM27. [Google Scholar]
- Mandzhavidze N, Ramaty R. 1992. Gamma rays from pion decay – Evidence for long-term trapping of particles in solar flares. Astrophys J Lett 396: L111–L114. https://doi.org/10.1086/186529. [CrossRef] [Google Scholar]
- Masson S, Antiochos SK, DeVore CR. 2013. A model for the escape of solar-flare-accelerated particles. Astrophys J 771: 82. https://doi.org/10.1088/0004-637X/771/2/82. [CrossRef] [Google Scholar]
- Masson S, Antiochos SK, DeVore CR. 2019. Escape of flare-accelerated particles in solar eruptive events. Astrophys J 884(2): 143. https://doi.org/10.3847/1538-4357/ab4515. [CrossRef] [Google Scholar]
- Masson S, Démoulin P, Dasso S, Klein K-L. 2012. The interplanetary magnetic structure that guides solar relativistic particles. A&A 538: A32. https://doi.org/10.1051/0004-6361/201118145. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Masson S, Klein K-L, Bütikofer R, Flückiger EO, Kurt V, Yushkov B, Krucker S. 2009. Acceleration of relativistic protons during the 20 January 2005 flare and CME. Solar Phys 257(2): 305–322. https://doi.org/10.1007/s11207-009-9377-y. [CrossRef] [Google Scholar]
- McCracken KG. 1962. The cosmic-ray flare effect. 1. Some new methods of analysis. J Geophys Res (Space Phys) 67: 423–434. https://doi.org/10.1029/JZ067i002p00423. [CrossRef] [Google Scholar]
- McCracken KG, Moraal H, Shea MA. 2012. The high-energy impulsive ground-level enhancement. Astrophys J 761: 101. https://doi.org/10.1088/0004-637X/761/2/101. [CrossRef] [Google Scholar]
- McCracken KG, Moraal H, Stoker PH. 2008. Investigation of the multiple-component structure of the 20 January 2005 cosmic ray ground level enhancement. J Geophys Res Space Phys 113(12): 101. https://doi.org/10.1029/2007JA012829. [Google Scholar]
- Mishev A, Poluianov S. 2021. About the altitude profile of the atmospheric cut-off of cosmic rays: New revised assessment. Solar Phys 296(8): 129. https://doi.org/10.1007/s11207-021-01875-5. [CrossRef] [Google Scholar]
- Moraal H, McCracken KG. 2012. The time structure of Ground Level Enhancements in solar cycle 23. Space Sci Rev 171: 85–95. https://doi.org/10.1007/s11214-011-9742-7. [CrossRef] [Google Scholar]
- Moraal H, McCracken KG, Caballero-Lopez RA. 2015. The time structure of cosmic-ray ground-level enhancements. In: Proceeding of the 34th International Cosmic Ray Conference (ICRC2015), Proceedings of Science, Vol. 236, p. 66. https://doi.org/10.22323/1.236.0066. [Google Scholar]
- Núñez M. 2011. Predicting solar energetic proton events (E > 10 MeV). Space Weather 9: 07003. https://doi.org/10.1029/2010SW000640. [Google Scholar]
- Núñez M, Reyes-Santiago PJ, Malandraki OE. 2017. Real-time prediction of the occurrence of GLE events. Space Weather 15(7): 861–873. https://doi.org/10.1002/2017SW001605. [CrossRef] [Google Scholar]
- Pohjolainen S, van Driel-Gesztelyi L, Culhane JL, Manoharan PK, Elliott HA. 2007. CME propagation characteristics from radio observations. Solar Phys 244: 167–188. https://doi.org/10.1007/s11207-007-9006-6. [CrossRef] [Google Scholar]
- Salas-Matamoros C, Klein K-L. 2015. On the statistical relationship between CME speed and soft X-ray flux and fluence of the associated flare. Solar Phys 290: 1337–1353. https://doi.org/10.1007/s11207-015-0677-0. [CrossRef] [Google Scholar]
- Share GH, Murphy RJ, White SM, Tolbert AK, Dennis BR, Schwartz RA, Smart DF, Shea MA. 2018. Characteristics of late-phase >100 MeV gamma-ray emission in solar eruptive events. Astrophys J 869: 182. https://doi.org/10.3847/1538-4357/aaebf7. [CrossRef] [Google Scholar]
- Shea MA, Smart DF. 2001. Vertical cutoff rigidities for cosmic ray stations since 1955. In: International Cosmic Ray Conference, Copernicus Gesellschaft, Vol. 10, p. 4063. [Google Scholar]
- Simnett GM. 2006. The timing of relativistic proton acceleration in the 20 January 2005 flare. A&A 445(2): 715–724. https://doi.org/10.1051/0004-6361:20053503. [CrossRef] [EDP Sciences] [Google Scholar]
- Strauss RD, Ogunjobi O, Moraal H, McCracken KG, Caballero-Lopez RA. 2017. On the pulse shape of Ground-Level Enhancements. Solar Phys 292(4): 51. https://doi.org/10.1007/s11207-017-1086-3. [CrossRef] [Google Scholar]
- Usoskin I, Koldobskiy S, Kovaltsov GA, Gil A, Usoskina I, Willamo T, Ibragimov A. 2020. Revised GLE database: Fluences of solar energetic particles as measured by the neutron-monitor network since 1956. A&A 640: A17. https://doi.org/10.1051/0004-6361/202038272. [CrossRef] [EDP Sciences] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.