Open Access
Issue |
J. Space Weather Space Clim.
Volume 13, 2023
|
|
---|---|---|
Article Number | 16 | |
Number of page(s) | 24 | |
DOI | https://doi.org/10.1051/swsc/2023014 | |
Published online | 12 June 2023 |
- Bandikova T, McCullough C, Kruizinga GL, Save H, Christophe B. 2019. GRACE accelerometer data transplant. Adv Space Res 64(3): 623–644. https://doi.org/10.1016/j.asr.2019.05.021. [CrossRef] [Google Scholar]
- Bernstein V, Pilinski M. 2022. Drag coefficient constraints for space weather observations in the upper thermosphere. Space Weather 20: e2021SW002977. https://doi.org/10.1029/2021SW002977. [CrossRef] [Google Scholar]
- Bernstein V, Pilinski M, Knipp D. 2020. Evidence for drag coefficient modeling errors near and above the oxygen-to-helium transition. J Spacecr Rockets 57(6): 1246–1263. https://doi.org/10.2514/1.A34740. [CrossRef] [Google Scholar]
- Bettadpur S. 2012. Gravity recovery and climate experiment: Product specification document. Technical report GRACE 327-720. Center for Space Research, The University of Texas at Austin. [Google Scholar]
- Bhattarai S, Ziebart M, Allgeier S, Grey S, Springer T, Harrison D, Li Z. 2019. Demonstrating developments in high-fidelity analytical radiation force modelling methods for spacecraft with a new model for GPS IIR/IIR-M. J Geod 93: 1515–1528. https://doi.org/10.1007/s00190-019-01265-7. [CrossRef] [Google Scholar]
- Bhattarai S, Ziebart M, Springer T, Gonzalez F, Tobias G. 2022. High-precision physics-based radiation force models for the Galileo spacecraft. Adv Space Res 69: 4141–4154. https://doi.org/10.1016/j.asr.2022.04.003. [CrossRef] [Google Scholar]
- Bird GA. 1994. Molecular gas dynamics and the direct simulation of gas flows. Oxford Science Publication, New York. [Google Scholar]
- Bruinsma S, Boniface C. 2021. The operational and research DTM-2020 thermosphere models. J Space Weather Space Clim 11, 47. https://doi.org/10.1051/swsc/2021032. [CrossRef] [EDP Sciences] [Google Scholar]
- Bruinsma S, Siemes C, Emmert JT, Mlynczak MG. 2022. Description and comparison of 21st century thermosphere data. Adv Space Res. https://doi.org/10.1016/j.asr.2022.09.038. [Google Scholar]
- Bruinsma S, Sutton E, Solomon SC, Fuller-Rowell T, Fedrizzi M. 2018. Space weather modeling capabilities assessment: Neutral density for orbit determination at low Earth orbit. Space Weather 16: 1806–1816. https://doi.org/10.1029/2018SW002027. [CrossRef] [Google Scholar]
- Bruinsma S, Tamagnan D, Biancale R. 2004. Atmospheric densities derived from CHAMP/STAR accelerometer observations. Planet Space Sci 52: 297–312. https://doi.org/10.1016/j.pss.2003.11.004. [Google Scholar]
- Case K, Kruizinga G, Wu S-C. 2010. GRACE level 1B data product user handbook. Technical report JPL D-22027. Jet Propulsion Laboratory. [Google Scholar]
- Christophe B, Boulanger D, Foulon B, Huynh P-A, Lebat V, Liorzou F, Perrot E. 2015. A new generation of ultra-sensitive electrostatic accelerometers for GRACE Follow-on and towards the next generation gravity missions. Acta Astronaut 117: 1–7. https://doi.org/10.1016/j.actaastro.2015.06.021. [CrossRef] [Google Scholar]
- Darugna F, Steigenberger P, Montenbruck O, Casotto S. 2018. Ray-tracing solar radiation pressure modeling for QZS-1. Adv Space Res 62: 935–943. https://doi.org/10.1016/j.asr.2018.05.036. [CrossRef] [Google Scholar]
- Dewitte S, Clerbaux N. 2017. Measurement of the earth radiation budget at the top of the atmosphere – a review. Remote Sens 9(11), 1143. https://doi.org/10.3390/rs9111143. [CrossRef] [Google Scholar]
- Dobslaw H, Bergmann-Wolf I, Dill R, Poropat L, Thomas M, Dahle C, Esselborn S, König R, Flechtner F. 2017. A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06. Geophys J Int 211: 263–269. https://doi.org/10.1093/gji/ggx302. [CrossRef] [Google Scholar]
- Doornbos E. 2011. Thermospheric density and wind determination from satellite dynamics. PhD thesis. Department of Astrodynamics and Satellite Missions, Delft University of Technology. Available at http://resolver.tudelft.nl/uuid:33002be1-1498-4bec-a440-4c90ec149aea. [Google Scholar]
- Doornbos E, Bruinsma S, Fritsche B, Koppenwallner G, Visser P, Van den IJssel J, de Teixeira de Encarnação J. 2014. ESA contract 4000102847/NL/EL, GOCE+ Theme 3: Air density and wind retrieval using GOCE data – final report, Technical Report. TU Delft. Avalilable at https://earth.esa.int/eogateway/documents/20142/1181177/GOCE-theme-3-final-report.pdf. [Google Scholar]
- Doornbos E, van den IJssel J, Lühr H, Förster M, Koppenwallner G. 2010. Neutral density and crosswind determination from arbitrarily oriented multiaxis accelerometers on satellites. J Spacecr Rockets 47(4): 580–589. https://doi.org/10.2514/1.48114. [CrossRef] [Google Scholar]
- Drob DP, Emmert JT, Crowley G, Picone JM, Shepherd GG, et al. 2008. An empirical model of the Earth’s horizontal wind fields: HWM07. J Geophys Res Space Phys 113, A12304. https://doi.org/10.1029/2008JA013668. [Google Scholar]
- Drob DP, Emmert JT, Meriwether JW, Makela JJ, Doornbos E, et al. 2015. An update to the Horizontal Wind Model (HWM): The quiet time thermosphere. Earth Space Sci 2: 301–319. https://doi.org/10.1002/2014EA000089. [CrossRef] [Google Scholar]
- Floberghagen R, Fehringer M, Lamarre D, Muzi D, Frommknecht B, Steiger C, Piñeiro J, da Costa A. 2011. Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission. J Geod 85: 749–758. https://doi.org/10.1007/s00190-011-0498-3. [CrossRef] [Google Scholar]
- Flury J, Bettadpur S, Tapley BD. 2008. Precise accelerometry onboard the GRACE gravity field satellite mission. Adv Space Res 42: 1414–1423. https://doi.org/10.1016/j.asr.2008.05.004. [CrossRef] [Google Scholar]
- Fortescue P, Swinerd G, Stark J. 2011. Spacecraft systems engineering, 4th edn. Wiley, Chichester. ISBN 978-0-470-75012-4. [CrossRef] [Google Scholar]
- Hagan ME, Roble RG, Hackney J. 2001. Migrating thermospheric tides. J Geophys Res Space Phys 106(A7): 12739–12752. https://doi.org/10.1029/2000JA000344. [CrossRef] [Google Scholar]
- Iorfida E, Daras I, Haagmans R, Strømme A. 2022. Swarm A and C accelerometers: Data validation and scientific interpretation. Earth Space Sci 10, e2022EA002458. https://doi.org/10.1029/2022EA002458. [Google Scholar]
- Kang Z, Bettadpur S, Tapley B, Cheng M, Ries J. 2003. Determination of CHAMP accelerometer calibration parameters. In: First CHAMP mission results for gravity, magnetic and atmospheric studies, Reigber C, Lühr H, Schwintzer P, (Eds.), Springer, Berlin, Heidelberg. pp. 19–25. https://doi.org/10.1007/978-3-540-38366-6_3. [CrossRef] [Google Scholar]
- Kenneally PW, Schaub H. 2020. Fast spacecraft solar radiation pressure modeling by ray tracing on graphics processing unit. Adv Space Res 65: 1951–1964. https://doi.org/10.1016/j.asr.2019.12.028. [CrossRef] [Google Scholar]
- Klinger B, Mayer-Gürr T. 2016. The role of accelerometer data calibration within GRACE gravity field recovery: Results from ITSG-Grace2016. Adv Space Res 458: 1597–1609. https://doi.org/10.1016/j.asr.2016.08.007. [CrossRef] [Google Scholar]
- Klinkrad H, Koeck C, Renard P. 1991. Key features of a satellite skin force modelling technique by means of Monte-Carlo ray tracing. Adv Space Res 11(6): 147–150. https://doi.org/10.1016/0273-1177(91)90244-E. [CrossRef] [Google Scholar]
- Kodikara T. 2019. Physical understanding and forecasting of the thermospheric structure and dynamics, Ph.D. Thesis, RMIT University, Melbourne, Australia. Available at https://researchrepository.rmit.edu.au/esploro/outputs/9921863942601341. [Google Scholar]
- König R, Michalak G, Neumayer K, Schmidt R, Zhu S, Meixner H, Reigber C. 2005. Recent developments in CHAMP orbit determination at GFZ. In: Earth observation with CHAMP results from three years in orbit, Reigber C, Lühr H, Schwintzer P, Wickert J, (Eds.), Springer, Berlin, Heidelberg. pp. 65–70. https://doi.org/10.1007/3-540-26800-6_10. [CrossRef] [Google Scholar]
- Krauss S, Behzadpour S, Temmer M, Lhotka C. 2020. Exploring thermospheric variations triggered by severe geomagnetic storm on 26 August 2018 using GRACE follow-on data. J Geophys Res Space Phys 125, e2019JA027731. https://doi.org/10.1029/2019JA027731. [CrossRef] [Google Scholar]
- Li Z, Ziebart M, Bhattarai S, Harrison D, Grey S. 2020. Fast solar radiation pressure modelling with ray tracing and multiple reflections. Adv Space Res 61: 2352–2365. https://doi.org/10.1016/j.asr.2018.02.019. [CrossRef] [Google Scholar]
- Lühr H, Rentz S, Ritter P, Liu H, Häusler K. 2007. Average thermospheric wind patterns over the polar regions, as observed by CHAMP. Ann Geophys 25: 1093–1101. https://doi.org/10.5194/angeo-25-1093-2007. [CrossRef] [Google Scholar]
- March G, Doornbos E, Visser P. 2019a. High-fidelity geometry models for improving the consistency of CHAMP, GRACE, GOCE and Swarm thermospheric density data sets. Adv Space Res 63: 213–238. https://doi.org/10.1016/j.asr.2018.07.009. [CrossRef] [Google Scholar]
- March G, Van den IJssel J, Siemes C, Visser P, Doornbos E, Pilinski M. 2021. Gas-surface interactions modelling influence on satellite aerodynamics and thermosphere mass density. J Space Weather Space Clim 11, 54. https://doi.org/10.1051/swsc/2021035. [CrossRef] [EDP Sciences] [Google Scholar]
- March G, Visser T, Visser P, Doornbos E. 2019b. CHAMP and GOCE thermospheric wind characterization with improved gas-surface interactions modelling. Adv Space Res 64: 1225–1242. https://doi.org/10.1016/j.asr.2019.06.023. [CrossRef] [Google Scholar]
- McCarthy D, Petit G. 2004. IERS conventions (2003), IERS Technical Note 32. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main. ISBN 3-89888-884-3. [Google Scholar]
- McCullough CM, Harvey N, Save H, Bandikova T. 2019. Description of calibrated GRACE-FO accelerometer data products (ACT). Technical report JPL D-103863. NASA Jet Propulsion Laboratory, California Institute of Technology. [Google Scholar]
- McGirr R, Tregoning P, Allgeyer S, McQueen H, Purcell A. 2022. Mitigation of thermal noise in GRACE accelerometer observations. Adv Space Res 69: 386–401. https://doi.org/10.1016/j.asr.2021.10.055. [CrossRef] [Google Scholar]
- Mehta PM, Paul SN, Crisp NH, Sheridan PL, Siemes C, March G, Bruinsma S. 2022. Satellite drag coefficient modeling for thermosphere science and mission operations. Adv Space Res. https://doi.org/10.1016/j.asr.2022.05.064. [Google Scholar]
- Mehta PM, Walker AC, Sutton EK, Godinez HC. 2017. New density estimates derived using accelerometers on board the CHAMP and GRACE satellites. Space Weather 15(4): 558–576. https://doi.org/10.1002/2016SW001562. [CrossRef] [Google Scholar]
- Montenbruck O, Gill E. 2012. Satellite orbits. Springer. ISBN 978-3-540-67280-7. https://doi.org/10.1007/978-3-642-58351-3. [Google Scholar]
- Montenbruck O, Steigenberger P, Hugentobler U. 2015. Enhanced solar radiation pressure modeling for Galileo satellites. J Geod 89: 283–297. https://doi.org/10.1007/s00190-014-0774-0. [CrossRef] [Google Scholar]
- Murböck M, Abrykosov P, Dahle C, Hauk M, Pail R, Flechtner F. 2023. In-orbit performance of the GRACE accelerometers and microwave ranging instrument. Remote Sens 15, 563. https://doi.org/10.3390/rs15030563. [CrossRef] [Google Scholar]
- Olsen N, Friis-Christensen E, Floberghagen R, Alken P, Beggan CD, et al. 2013. The Swarm Satellite Constellation Application and Research Facility (SCARF) and Swarm data products. Earth Planet Space 65(11): 1189–1200. https://doi.org/10.5047/eps.2013.07.001. [CrossRef] [Google Scholar]
- Palmroth M, Grandin M, Sarris T, Doornbos E, Tourgaidis S, et al. 2021. Lower thermosphere – ionosphere (LTI) quantities: Current status of measuring techniques and models. Ann Geophys 39: 189–237. https://doi.org/10.5194/angeo-39-189-2021. [CrossRef] [Google Scholar]
- Pavlis D, Poulouse S, McCarthy J. 2006. GEODYN operations manual. SGT Inc., Greenbelt. [Google Scholar]
- Perosanz F, Biancale R, Lemoine J, Vales N, Loyer S, Bruinsma S. 2005. Evaluation of the CHAMP accelerometer on two years of mission. In: Earth observation with CHAMP results from three years in orbit, Reigber C, Lühr H, Schwintzer P, Wickert J, (Eds.), Springer, Berlin. pp. 77–82. https://doi.org/10.1007/3-540-26800-6_10. [CrossRef] [Google Scholar]
- Picone JM, Hedin AE, Drob DP, Aikin AC. 2002. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J Geophys Res Space Phys 107(A12): 1468. https://doi.org/10.1029/2002JA009430. [Google Scholar]
- Prange L. 2010. Global gravity field determination using the GPS measurements made onboard the low Earth orbiting satellite CHAMP. Geodätisch-geophysikalische Arbeiten in der Schweiz, 81, Schweizerische Geodätische Kommission, Zürich, Switzerland. Available at http://www.sgc.ethz.ch/sgc-volumes/sgk-81.pdf. [Google Scholar]
- Qian L, Burns AG, Emery BA, Foster B, Lu G, Maute A, Richmond AD, Roble RG, Solomon SC, Wang W. 2014. The NCAR TIE-GCM: A community model of the coupled thermosphere/ionosphere system. In: Modeling the ionosphere thermosphere system, Huba J, Schunk R, Khazanov G, (Eds.), John Wiley, Washington. pp. 73–83ISBN: 9781118704417. https://doi.org/10.1002/9781118704417.ch7. [CrossRef] [Google Scholar]
- Qian L, Solomon SC, Kane TJ. 2009. Seasonal variation of thermospheric density and composition. J Geophys Res Space Phys 114(A1): A01312. https://doi.org/10.1029/2008JA013643. [CrossRef] [Google Scholar]
- Ray R. 1999. A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.2. Technical Report NASA/TM1999-209478. NASA Goddard Space Flight Center. [Google Scholar]
- Reigber C, Lühr H, Schwintzer P. 2002. CHAMP mission status. Adv Space Res 30(2): 129–134. https://doi.org/10.1016/S0273-1177(02)00276-4. [CrossRef] [Google Scholar]
- Richmond AD, Ridley EC, Roble RG. 1992. A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys Res Lett 19(6): 601–604. https://doi.org/10.1029/92GL00401. [CrossRef] [Google Scholar]
- Sentman LH. 1961. Free molecule flow theory and its application to the determination of aerodynamic forces. Technical Report. Lockheed Missiles and Space Co Inc, Sunnyvale, CA. [Google Scholar]
- Siemes C. 2020. Swarm satellite thermo-optical properties and external geometry. Technical Report ESA-EOPG-MOM-MO-15. European Space Agency. Available at https://earth.esa.int/eogateway/documents/20142/37627/swarm-thermo-optical-properties-and-external-geometry.pdf. [Google Scholar]
- Siemes C, de Teixeira J, da Encarnação E, Doornbos J, van den IJssel J, Kraus R, Pereštý L, Grunwaldt G, Apelbaum J Flury, Holmdahl Olsen PE. 2016. Swarm accelerometer data processing from raw accelerations to thermospheric neutral densities. Earth Planet Space 68: 92. https://doi.org/10.1186/s40623-016-0474-5. [CrossRef] [Google Scholar]
- Standish E. 1998. JPL planetary and lunar ephemerides, DE405/LE405. JPL IOM 312.F-98-048. ftp://ssd.jpl.nasa.gov/pub/eph/planets/ioms/de405.iom.pdf. [Google Scholar]
- Sutton EK. 2008. Effects of solar disturbances on the thermosphere densities and winds from CHAMP and GRACE satellite accelerometer data. Ph.D. Thesis, Department of Aerospace Engineering Sciences, University of Colorado at Boulder. Available at https://www.proquest.com/docview/304639074. [Google Scholar]
- Sutton EK. 2018. A new method of physics-based data assimilation for the quiet and disturbed thermosphere. Space Weather 16: 736–753. https://doi.org/10.1002/2017SW001785. [CrossRef] [Google Scholar]
- Sutton EK, Nerem RS, Forbes JM. 2007. Density and winds in the thermosphere deduced from accelerometer data. J Spacecr Rockets 44(6): 1210–1219. https://doi.org/10.2514/1.28641. [CrossRef] [Google Scholar]
- Tapley BD, Bettadpur S, Watkins M, Reigber C. 2004. The gravity recovery and climate experiment: Mission overview and early results. Geophys Res Lett 31(9). L019920. https://doi.org/10.1029/2004GL019920. [Google Scholar]
- Touboul P, Foulon B, Christophe B, Marque JP. 2012. CHAMP, GRACE, GOCE Instruments and Beyond. In: Geodesy for Planet Earth, vol 136, Kenyon S, Pacino M, Marti U, (Eds.), Springer. pp. 215–221. https://doi.org/10.1007/978-3-642-20338-1_26. [CrossRef] [Google Scholar]
- Touboul P, Métris G, Sélig H, Le Traon O, Bresson A, Zahzam N, Christophe B, Rodrigues M. 2016. Gravitation and geodesy with inertial sensors, from ground to space. Aerospace Lab 12, AL12-11. https://doi.org/10.12762/2016.AL12-11. [Google Scholar]
- Vallado DA, Finkleman D. 2014. A critical assessment of satellite drag and atmospheric density modeling. Acta Astronaut 95: 141–165. https://doi.org/10.1016/j.actaastro.2013.10.005. [CrossRef] [Google Scholar]
- Van den IJssel J, Doornbos E, Iorfida E, March G, Siemes C, Montenbruck O. 2020. Thermosphere densities derived from Swarm GPS observations. Adv Space Res 65: 1758–1771. https://doi.org/10.1016/j.asr.2020.01.004. [CrossRef] [Google Scholar]
- Van Helleputte T. 2011. The integration of spaceborne accelerometry in the precise orbit determination of low-flying satellites. Ph.D. Thesis, Department of Astrodynamics and Satellite Missions, Delft University of Technology. Available at http://resolver.tudelft.nl/uuid:c84217a2-967c-45c4-85cb-a1630590b926. [Google Scholar]
- van Helleputte T, Doornbos E, Visser P. 2009. CHAMP and GRACE accelerometer calibration by GPS-based orbit determination. Adv Space Res 43: 1890–1896. https://doi.org/10.1016/j.asr.2009.02.017. [CrossRef] [Google Scholar]
- Vielberg K, Forootan E, Lück C, Löcher A, Kusche J, Börger K. 2018. Comparison of accelerometer data calibration methods used in thermospheric neutral density estimation. Ann Geophys 36(3): 761–779. https://doi.org/10.5194/angeo-36-761-2018. [CrossRef] [Google Scholar]
- Vielberg K, Kusche J. 2020. Extended forward and inverse modeling of radiation pressure accelerations for LEO satellites. J Geod 94, 43. https://doi.org/10.1007/s00190-020-01368-6. [CrossRef] [Google Scholar]
- Visser P, van den IJssel J. 2016. Calibration and validation of individual GOCE accelerometers by precise orbit determination. J Geod 90: 1–13. https://doi.org/10.1007/s00190-015-0850-0. [CrossRef] [Google Scholar]
- Wen HY, Kruizinga G, Paik M, Landerer F, Bertiger W, Sakumura C, Bandikova T, Mccullough C. 2019. Gravity recovery and climate experiment follow-on (GRACE-FO) level-1 data product user handbook, Technical report JPL D-56935 (URS270772). NASA Jet Propulsion Laboratory, California Institute of Technology. [Google Scholar]
- Wöske F, Kato T, Rievers B, List M. 2019. GRACE accelerometer calibration by high precision non-gravitational force modeling. Adv Space Res 63: 1318–1335. https://doi.org/10.1016/j.asr.2018.10.025. [CrossRef] [Google Scholar]
- Zehentner N, Mayer-Gürr T. 2016. Precise orbit determination based on raw GPS measurements. J Geod 90: 275–286. https://doi.org/10.1007/s00190-015-0872-7. [CrossRef] [Google Scholar]
- Ziebart M. 2004. Generalized analytical solar radiation pressure modeling algorithm for spacecraft of complex shape. J Spacecr Rockets 41(5): 840–848. https://doi.org/10.2514/1.13097. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.