Open Access
Issue |
J. Space Weather Space Clim.
Volume 13, 2023
|
|
---|---|---|
Article Number | 28 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/swsc/2023027 | |
Published online | 28 November 2023 |
- Afraimovich EL, Demyanov VV, Ishin AB, Smolkov G Ya. 2008. Powerful solar radio bursts as a global and free tool for testing satellite broadband radio systems, including GPS–GLONASS–GALILEO. J Atmos Sol Terr Phys 70(15): 1985–1994. https://doi.org/10.1016/j.jastp.2008.09.008. [CrossRef] [Google Scholar]
- Afraimovich EL, Demyanov VV, Smolkov GY. 2009. The total failures of GPS functioning caused by the powerful solar radio burst on December 13, 2006. Earth Planet Space 61: 637–641. https://doi.org/10.1186/BF03352940. [CrossRef] [Google Scholar]
- Bastian TS, Benz AO, Gary DE. 1998. Radio emission from solar flares. Annu Rev Astron Astrophys 36: 131–188. https://doi.org/10.1146/annurev.astro.36.1.131. [CrossRef] [Google Scholar]
- Basu S, Basu S, Mullen JP, Bushby A. 1980. Long-term 1.5 GHz amplitude scintillation measurements at the magnetic equator. Geophys Res Lett 7: 259–262. https://doi.org/10.1029/GL007i004p00259. [CrossRef] [Google Scholar]
- Carrano CS, Bridgwood CT, Groves KM. 2009. Impacts of the December 2006 solar radio bursts on the performance of GPS. Radio Sci. 44: RS0A25. https://doi.org/10.1029/2008RS004071. [Google Scholar]
- Claßen HT, Aurass H. 2002. On the association between type II radio bursts and CMEs. A&A 384(3): 1098–1106. https://doi.org/10.1051/0004-6361:20020092. [CrossRef] [EDP Sciences] [Google Scholar]
- Correia E, Muella MTAH, Alfonsi L, Prol FS, Camargo PO. 2019. GPS scintillations and total electron content climatology in the Southern American sector, accuracy of GNSS methods. IntechOpen. https://doi.org/10.5772/intechopen.79218. [Google Scholar]
- Cerruti AP, Kintner PM, Gary DE, Lanzerotti LJ, de Paula ER, Vo HB. 2006. Observed solar radio burst effects on GPS/Wide Area Augmentation System carrier-to-noise ratio. Space Weather 4: S10006. https://doi.org/10.1029/2006SW000254. [CrossRef] [Google Scholar]
- Cerruti AP, Kintner PM Jr, Gary DE, Mannucci AJ, Meyer RF, Doherty P, Coster AJ. 2008. Effect of intense December 2006 solar radio bursts on GPS receivers. Space Weather 6: S10D07. https://doi.org/10.1029/2007SW000375. [CrossRef] [Google Scholar]
- Chen Z, Gao Y, Liu Z. 2005. Evaluation of solar radio bursts’ effect on GPS receiver signal tracking within International GPS Service network. Radio Sci 40: RS3012. https://doi.org/10.1029/2004RS003066. [Google Scholar]
- Coster AJ, Erickson PJ, Lanzerotti LJ, Zhang Y, Paxton LJ. 2021. Space weather effects and applications. Geophysical Monograph Series. American Geophysical Union. ISBN:9781119507574. https://doi.org/10.1002/9781119815570. [CrossRef] [Google Scholar]
- Demyanov VV, Afraimovich EL, Jin S. 2012. An evaluation of potential solar radio emission power threat on GPS and GLONASS performance. GPS Solut 16(4): 411–424. https://doi.org/10.1007/s10291-011-0241-9. [CrossRef] [Google Scholar]
- de Paula ER, Rodrigues FS, Iyer KN, Kantor IJ, Abdu MA, Kintner PM, Ledvina BM, Kil H. 2003. Equatorial anomaly effects on GPS scintillations in Brazil. Adv Space Res 31(3): 749–754. https://doi.org/10.1016/S0273-1177(03)00048-6. [CrossRef] [Google Scholar]
- de Paula ER, Martinon ARF, Carrano C, Moraes AO, Neri JACF, et al. 2022. Solar flare and radio burst effects on GNSS signals and the ionosphere during September 2017. Radio Sci 57: e2021RS007418. https://doi.org/10.1029/2021RS007418. [CrossRef] [Google Scholar]
- Gomez Socola J, Rodrigues FS. 2022. ScintPi 2.0 and 3.0: low-cost GNSS-based monitors of ionospheric scintillation and total electron content. Earth Planet Space 74: 185. https://doi.org/10.1186/s40623-022-01743-x. [CrossRef] [Google Scholar]
- Groves KM, Basu S, Weber EJ, Smitham M, Kuenzler H, et al. 1997. Equatorial scintillation and systems support. Radio Sci 32(5): 2047–2064. https://doi.org/10.1029/97RS00836. [CrossRef] [Google Scholar]
- Ishimaru A, Kuga Y, Liu J, Kim Y, Freeman A. 1999. Ionospheric effects on synthetic aperture radar at 100 MHz to 2 GHz. Radio Sci 34: 257–268. https://doi.org/10.1029/1998RS900021. [CrossRef] [Google Scholar]
- Jiao Y, Morton YT. 2015. Comparison of the effect of high-latitude and equatorial ionospheric scintillation on GPS signals during the maximum of solar cycle 24. Radio Sci 50: 886–903. https://doi.org/10.1002/2015RS005719. [CrossRef] [Google Scholar]
- Kelly MA, Comberiate JM, Miller ES, Paxton LJ. 2014. Progress toward forecasting of space weather effects on UHF SATCOM after Operation Anaconda. Space Weather 12: 601–611. https://doi.org/10.1002/2014SW001081. [CrossRef] [Google Scholar]
- Kintner PM, Ledvina BM, de Paula ER. 2007. GPS and ionospheric scintillations. Space Weather 5: S09003. https://doi.org/10.1029/2006SW000260. [Google Scholar]
- Klobuchar J, Kunches J, VanDierendonck A. 1999. Eye on the ionosphere: potential solar radio burst effects on GPS signal to noise. GPS Solut 3: 69–71. https://doi.org/10.1007/PL00012794. [CrossRef] [Google Scholar]
- Ledvina BM, Makela JJ, Kintner PM. 2002. First observations of intense GPS L1 amplitude scintillations at midlatitude. Geophys Res Lett 29(14): 4-1–4-4. https://doi.org/10.1029/2002GL014770. [CrossRef] [Google Scholar]
- Moraes AO, Rodrigues FS, Perrella WJ, de Paula ER. 2012. Analysis of the characteristics of low-latitude GPS amplitude scintillation measured during solar maximum conditions and implications for receiver performance. Surv Geophys 33(5): 1107–1113. https://doi.org/10.1007/s10712-011-9161-z. [CrossRef] [Google Scholar]
- Morosan DE, Kumari A, Kilpua EKJ, Hamini A. 2021. Moving solar radio bursts and their association with coronal mass ejections. A&A 647: L12. https://doi.org/10.1023/A:1005075003370. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Mrak S, Semeter J, Nishimura Y, Rodrigues FS, Coster AJ, Groves K. 2020. Leveraging geodetic GPS receivers for ionospheric scintillation science. Radio Sci 55: e2020RS007131. https://doi.org/10.1029/2020RS007131. [CrossRef] [Google Scholar]
- Muella MTAH, Kherani EA, de Paula ER, Cerruti AP, Kintner PM, Kantor IJ, Mitchell CN, Batista IS, Abdu MA. 2010. Scintillation-producing Fresnel-scale irregularities associated with the regions of steepest TEC gradients adjacent to the equatorial ionization anomaly. J Geophys Res 115: A03301. https://doi.org/10.1029/2009JA014788. [Google Scholar]
- Muhammad B, Alberti V, Marassi A, Cianca E, Messerotti M. 2015. Performance assessment of GPS receivers during the September 24, 2011 solar radio burst event. J Space Weather Space Clim 5: A32. https://doi.org/10.1051/swsc/2015034. [CrossRef] [EDP Sciences] [Google Scholar]
- Nita GM, Gary DE, Lee J. 2004. Statistical study of two years of solar flare radio spectra obtained with the Owens Valley Solar Array. Astrophys J 605: 528–545. https://doi.org/10.1086/382219. [CrossRef] [Google Scholar]
- Rodrigues FS, Moraes AO. 2019. ScintPi: A low-cost, easy-to-build GPS ionospheric scintillation monitor for DASI studies of space weather, education, and citizen science initiatives. Earth Space Sci 6: 1547–1560. https://doi.org/10.1029/2019EA000588. [CrossRef] [Google Scholar]
- Rodrigues FS, Socola JG, Moraes AO, Martinis C, Hickey DA. 2021. On the properties of and ionospheric conditions associated with a mid-latitude scintillation event observed over southern United States. Space Weather 19: e2021SW002744. https://doi.org/10.1029/2021SW002744. [CrossRef] [Google Scholar]
- Sato H, Jakowski N, Berdermann J, Jiricka K, Heßelbarth A, Banyś D, Wilken V. 2019. Solar radio burst events on 6 September 2017 and its impact on GNSS signal frequencies. Space Weather 17: 816–826. https://doi.org/10.1029/2019SW002198. [CrossRef] [Google Scholar]
- Seif A, Liu J-Y, Mannucci AJ, Carter BA, Norman R, Caton RG, Tsunoda RT. 2017. A study of daytime L-band scintillation in association with sporadic E along the magnetic dip equator. Radio Sci 52: 1570–1577. https://doi.org/10.1002/2017RS006393. [CrossRef] [Google Scholar]
- Sousasantos J, Gomez Socola J, Rodrigues FS, Eastes RW, Brum CGM, Terra P . 2023. Severe L-band scintillation over low-to-mid latitudes caused by an extreme equatorial plasma bubble: joint observations from ground-based monitors and GOLD. Earth Planets Space 75: 41. https://doi.org/10.1186/s40623-023-01797-5. [CrossRef] [Google Scholar]
- Spogli L, Alfonsi L, Romano V, de Franceschi G, Monico G, Shimabukuro M, Bougar B, Aquino M. 2013. Assessing the GNSS scintillation climate over Brazil under increasing solar activity. J Atmos Sol Terr Phys 105: 199–206. https://doi.org/10.1016/j.jastp.2013.10.003. [CrossRef] [Google Scholar]
- Sreeja V, Aquino M, de Jong K. 2013. Impact of the 24 September 2011 solar radio burst on the performance of GNSS receivers. Space Weather 11: 306–312. https://doi.org/10.1002/swe.20057. [CrossRef] [Google Scholar]
- Sreeja V, Aquino M, de Jong K, Visser H. 2014. Effect of the 24 September 2011 solar radio burst on precise point positioning service. Space Weather 12: 143–147. https://doi.org/10.1002/2013SW001011. [CrossRef] [Google Scholar]
- Valladares CE, Villalobos J, Sheehan R, Hagan MP. 2004. Latitudinal extension of low-latitude scintillations measured with a network of GPS receivers. Ann Geophys 22: 3155–3175. https://doi.org/10.5194/angeo-22-3155-2004. [CrossRef] [Google Scholar]
- Yeh KC, Liu C-H. 1982. Radio wave scintillations in the ionosphere. Proc IEEE 70: 324–360. https://doi.org/10.1109/PROC.1982.12313. [CrossRef] [Google Scholar]
- Yue X, Schreiner WS, Kuo Y-H, Zhao B, Wan W, et al. 2013. The effect of solar radio bursts on the GNSS radio occultation signals. J Geophys Res Space Phys 118: 5906–5918. https://doi.org/10.1002/jgra.50525. [CrossRef] [Google Scholar]
- Yue X, Wan W, Yan L, Sun W, Hu L, Schreiner W. 2018. Chapter 22 - the effect of solar radio bursts on GNSS signals. In: Extreme events Geospace orig. Predict. Cons. Buzulukova N, (Ed.) Elsevier, Amsterdam. pp. 541–554. https://doi.org/10.1016/B978-0-12-812700-1.00022-4. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.