Issue |
J. Space Weather Space Clim.
Volume 13, 2023
Topical Issue - Ionospheric plasma irregularities and their impact on radio systems
|
|
---|---|---|
Article Number | 27 | |
Number of page(s) | 22 | |
DOI | https://doi.org/10.1051/swsc/2023021 | |
Published online | 07 November 2023 |
- Asai K, Kojima M, Tokumaru M, Yokobe A, Jackson BV, Hick PL, Manoharan PK. 1998. Heliospheric tomography using interplanetary scintillation observations: 3. Correlation between speed and electron density fluctuations in the solar wind. J Geophys Res Space Phys 103(A2): 1991–2001. https://doi.org/10.1029/97JA02750. [CrossRef] [Google Scholar]
- Błaszkiewicz LP, Lewandowski W, Krankowski A, Kijak J, Froń A, Sidorowicz T, Dąbrowski B, Kotulak K, Hajduk M. 2018. PL612 LOFAR station sensitivity measurements in the context of its application for pulsar observations. Adv Space Res 62(7): 1904–1917. https://doi.org/10.1016/j.asr.2018.06.047. [CrossRef] [Google Scholar]
- Borries C, Jakowski N, Wilken V. 2009. Storm induced large scale TIDs observed in GPS derived TEC. Ann Geophys 27: 1605–1612. https://doi.org/10.5194/angeo-27-1605-2009. [CrossRef] [Google Scholar]
- Bosy J, Graszka W, Leończyk M. 2007. ASG-EUPOS – a multifunctional precise satellite positioning system in Poland. TransNav 1(4): 371–374. [Google Scholar]
- Briggs B, Parkin I. 1963. On the variation of radio star and satellite scintillations with zenith angle. J Atmos Terr Phys 25(6): 339–366. https://doi.org/10.1016/0021-9169(63)90150-8. [CrossRef] [Google Scholar]
- Błaszkiewicz L, Lewandowski W, Krankowski A, Kijak J, Koralewska O, Dąbrowski B. 2016. Prospects for scrutiny of pulsars with polish part of LOFAR. Acta Geophys 64: 293–315. https://doi.org/10.1515/acgeo-2015-0038. [CrossRef] [Google Scholar]
- Błaszkiewicz LP, Flisek P, Kotulak K, Krankowski A, Lewandowski W, Kijak J, Froń A. 2021. Finding the ionospheric fluctuations reflection in the pulsar signals’ characteristics observed with LOFAR. Sensors 21(1): 51. https://doi.org/10.3390/s21010051. [Google Scholar]
- Cherniak I, Krankowski A, Zakharenkova I. 2014. Observation of the ionospheric irregularities over the Northern hemisphere: methodology and service. Radio Sci 49: 653–662. https://doi.org/10.1002/2014RS005433. [CrossRef] [Google Scholar]
- Crane R. 1977. Ionospheric scintillation. Proc IEEE 65(2): 180–199. https://doi.org/10.1109/PROC.1977.10456. [CrossRef] [Google Scholar]
- de Gasperin F, Vink J, McKean JP, Asgekar A, Avruch I, et al. 2020. Cassiopeia A, Cygnus A, Taurus A, and Virgo A at ultra-low radio frequencies. A&A 635: A150. https://doi.org/10.1051/0004-6361/201936844. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- de Gasperin F, Mevius M, Rafferty DA, Intema HT, Fallows RA. 2018. The effect of the ionosphere on ultra-low-frequency radio-interferometric observations. A&A 615: A179. https://doi.org/10.1051/0004-6361/201833012. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Fallows R, Coles W, McKay-Bukowski D, Vierinen J, Virtanen I, et al. 2014. Broadband meter-wavelength observations of ionospheric scintillation. J Geophys Res Space Phys 119: 10544–10560. https://doi.org/10.1002/2014JA020406. [CrossRef] [Google Scholar]
- Fallows R, Forte B, Astin I, Allbrook T, Arnold A, et al. 2020. A LOFAR Observation of ionospheric scintillation from two simultaneous travelling ionospheric disturbances. J Space Weather and Space Clim 10: 10. https://doi.org/10.1051/swsc/2020010. [CrossRef] [EDP Sciences] [Google Scholar]
- Fallows RA, Bisi MM, Forte B, Ulich T, Konovalenko AA, Mann G, Vocks C. 2016. Separating nightside interplanetary and ionospheric scintillation with LOFAR. Astrophys J Lett 828(1): L7. https://doi.org/10.3847/2041-8205/828/1/L7. [CrossRef] [Google Scholar]
- Forte B. 2008. Refractive scattering evidence from multifrequency scintillation spectra observed at auroral latitudes. Radio Sci 43: RS2012. https://doi.org/10.1029/2007RS003715. [CrossRef] [Google Scholar]
- Forte B. 2012a. Analysis of strong ionospheric scintillation events measured by means of GPS signals at low latitudes during disturbed conditions. Radio Sci 47(4): RS4009. https://doi.org/10.1029/2011RS004789. [Google Scholar]
- Forte B. 2012b. Analysis of the PLL phase error in presence of simulated ionospheric scintillation events. Radio Sci 47(3): RS3006. https://doi.org/10.1029/2011RS004790. [Google Scholar]
- Forte B, Coleman C, Skone S, Häggström I, Mitchell C, Kinrade J, Bust G. 2017. Identification of scintillation signatures on GPS signals originating from plasma structures detected with EISCAT incoherent scatter radar along the same line of sight. J Geophys Res Space Phys 122: 916–931. https://doi.org/10.1002/2016JA023271. [CrossRef] [Google Scholar]
- Forte B, Fallows R, Bisi M, Zhang J, Krankowski A, Dąbrowski B, Rothkaehl H, Vocks C. 2022. Interpretation of radio wave scintillation observed through LOFAR RADIO TELESCOPES. Astrophys J Suppl Ser 263: 36. https://doi.org/10.3847/1538-4365/ac6deb. [CrossRef] [Google Scholar]
- Hernández-Pajares M, Juan JM, Sanz J, Aragon-Àngel A. 2012. Propagation of medium scale traveling ionospheric disturbances at different latitudes and solar cycle conditions. Radio Sci 47(6): RS0K05. https://doi.org/10.1029/2011RS004951. [Google Scholar]
- Ho C, Slobin S, Kantak A, Asmar S. 2008. Solar brightness temperature and corresponding antenna noise temperature at microwave frequencies. Interplanet Net Prog Rep 42–175: 1–11. https://ui.adsabs.harvard.edu/abs/2008IPNPR.175E..1H/abstract. [Google Scholar]
- John HM, Forte B, Astin I, Allbrook T, Arnold A, Vani BC, Häggström I, Sato H. 2021. An EISCAT UHF/ESR experiment that explains how ionospheric irregularities induce GPS phase fluctuations at auroral and polar latitudes. Radio Sci 56(9): e07236. https://doi.org/10.1029/2020RS007236. [Google Scholar]
- Johnston G, Riddell A, Hausler G. 2017. The international GNSS service. In: Springer handbook of global navigation satellite systems, Teunissen PJ, Montenbruck O (Eds.) Springer, Cham. pp. 967–982. https://doi.org/10.1007/978-3-319-42928-1_33. [CrossRef] [Google Scholar]
- Kelley MC (Ed.). 2009. The Earth’s ionosphere plasma physics and electrodynamics, vol. 96 of International Geophysics. Academic Press. https://doi.org/10.1016/S0074-6142(09)60212-6 [Google Scholar]
- Krankowski A, Błaszkiewicz L, Otmianowska-Mazur K, Soida M, Rothkaehl H, Atamaniuk B. 2014. POLFAR – Polish incarnation of the LOFAR. Scientific objectives and system realization. In: 2014 20th International Conference on Microwaves, Radar and Wireless Communications (MIKON), Gdansk, Poland, IEEE, pp. 1–4. https://doi.org/10.1109/MIK0N.2014.6899926. [Google Scholar]
- Ondoh T, Marubashi K. 2001. Science of Space Environment. Wave summit course. Ohmsha. ISBN 9784274903847. [Google Scholar]
- Panasenko SV, Otsuka Y, van de Kamp M, Chernogor LF, Shinbori A, Tsugawa T, Nishioka M. 2019. Observation and characterization of traveling ionospheric disturbances induced by solar eclipse of 20 March 2015 using incoherent scatter radars and GPS networks. J Atmos Sol-Terr Phys 191: 105051. https://doi.org/10.1016/j.jastp.2019.05.015. [CrossRef] [Google Scholar]
- Parkinson B, Spilker J. 1996. Global positioning system: theory and applications, vol. 1 in Ciencia militar y naval. American Institute of Aeronautics & Astronautics. ISBN 9781600864193. [CrossRef] [Google Scholar]
- Pi X, Mannucci A, Lindqwister U, Ho C. 1997. Monitoring of global ionospheric irregularities using the worldwide GPS network. Geophys Res Lett 24: 2283–2286. https://doi.org/10.1029/97GL02273. [CrossRef] [Google Scholar]
- Tsugawa T, Saito A, Otsuka Y. 2004. A statistical study of large-scale traveling ionospheric disturbances using the GPS network in Japan. J Geophys Res Space Phys 109(A6): A06302. https://doi.org/10.1029/2003JA010302. [CrossRef] [Google Scholar]
- Van Dierendonck AJ. 1995. GPS receivers. In: Global positioning system: theory and application, vol. 1, Parkinson BW, Spilker Jr JJ, (Eds.) American Institute of Aeronautics and Astronautics, Washington, DC. pp. 329–407. [Google Scholar]
- van Dierendonck AJ, Klobuchar J, Hua Q. 1993. Ionospheric scintillation monitoring using commercial single frequency C/A code receivers. In: Proceedings of the 6th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1993), Salt Lake City, UT, 22–24 September, 1333–1342. [Google Scholar]
- van Haarlem MP, Wise MW, Gunst AW, Heald G, McKean JP, et al. 2013. LOFAR: The LOw-Frequency ARray. A&A 556: A2. https://doi.org/10.1051/0004-6361/201220873. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.