Issue |
J. Space Weather Space Clim.
Volume 14, 2024
Topical Issue - CMEs, ICMEs, SEPs: Observational, Modelling, and Forecasting Advances
|
|
---|---|---|
Article Number | 2 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/swsc/2023033 | |
Published online | 06 February 2024 |
- Attrill GDR, Harra LK, van Driel-Gesztelyi L, Démoulin P. 2007. Coronal “wave”: magnetic footprint of a coronal mass ejection? Astrophys J 656(2): L101–L104. https://doi.org/10.1086/512854. [CrossRef] [Google Scholar]
- Balmaceda LA, Vourlidas A, Stenborg G, Dal Lago A. 2018. How reliable are the properties of coronal mass ejections measured from a single iewpoint? Astrophys J 863(1): 57. https://doi.org/10.3847/1538-4357/aacff8. [CrossRef] [Google Scholar]
- Barnes WT, Cheung MCM, Bobra MG, Boerner PF, Chintzoglou G, et al. 2020. aiapy: A python package for analyzing solar EUV image data from AIA. J Open Source Softw 5(55): 2801. https://doi.org/10.21105/joss.02801. [CrossRef] [Google Scholar]
- Biesecker DA, Myers DC, Thompson BJ, Hammer DM, Vourlidas A. 2002. Solar phenomena associated with “EIT waves”. Astrophys J 569(2): 1009–1015. https://doi.org/10.1086/339402. [CrossRef] [Google Scholar]
- Brueckner GE, Howard RA, Koomen MJ, Korendyke CM, Michels DJ, et al. 1995. The Large Angle Spectroscopic Coronagraph (LASCO). Sol Phys 162(1–2): 357–402. https://doi.org/10.1007/BF00733434. [CrossRef] [Google Scholar]
- Byrne JP, Long DM, Gallagher PT, Bloomfield DS, Maloney SA, McAteer RTJ, Morgan H, Habbal SR. 2013. Improved methods for determining the kinematics of coronal mass ejections and coronal waves. A&A 557: A96. https://doi.org/10.1051/0004-6361/201321223. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Cane HV, Erickson WC, Hanisch RJ, Turner PJ. 1981. Observations of rich clusters of galaxies at metre wavelengths. Mon Notices Royal Astron Soc 196: 409–415. https://doi.org/10.1093/mnras/196.3.409. [CrossRef] [Google Scholar]
- Chen PF. 2006. The Relation between EIT waves and solar flares. Astrophys J 641(2): L153–L156. https://doi.org/10.1086/503868. [CrossRef] [Google Scholar]
- Chen PF. 2009. The relation between EIT waves and coronal mass ejections. Astrophys J 698(2): L112–L115. https://doi.org/10.1088/0004-637X/698/2/L112. [CrossRef] [Google Scholar]
- Chen PF, Wu ST, Shibata K, Fang C. 2002. Evidence of EIT and moreton waves in numerical simulations. Astrophys J Lett 572: L99–L102. https://doi.org/10.1086/341486. [CrossRef] [Google Scholar]
- Cheng X, Zhang J, Kliem B, Török T, Xing C, Zhou ZJ, Inhester B, Ding MD. 2020. Initiation and early kinematic evolution of solar eruptions. Astrophys J 894(2): 85. https://doi.org/10.3847/1538-4357/ab886a. [CrossRef] [Google Scholar]
- Dai Y, Auchère F, Vial JC, Tang YH, Zong WG. 2010. Large-scale extreme-ultraviolet disturbances associated with a limb coronal mass ejection. Astrophys J 708(2): 913–919. https://doi.org/10.1088/0004-637X/708/2/913. [CrossRef] [Google Scholar]
- Delaboudinière JP, Artzner GE, Brunaud J, Gabriel AH, Hochedez JF, et al. 1995. EIT: Extreme-ultraviolet imaging telescope for the SOHO mission. Sol Phys 162(1–2): 291–312. https://doi.org/10.1007/BF00733432. [CrossRef] [Google Scholar]
- Fisher GH, Welsch BT. 2008. FLCT: A fast, efficient method for performing local correlation tracking. In: Subsurface and atmospheric influences on solar activity, Howe R, Komm RW, Balasubramaniam KS, Petrie GJD (Eds.), vol. 383 of Astronomical Society of the Pacific Conference Series, p. 373. [Google Scholar]
- Gallagher PT, Long DM. 2010. Large-scale bright fronts in the solar corona: a review of “EIT waves”. Space Sci Rev 135: https://doi.org/10.1007/s11214-010-9710-7. [Google Scholar]
- Gopalswamy N, Hanaoka Y, Hudson HS. 2000. Structure and dynamics of the corona surrounding an eruptive prominence. Adv Space Res 25(9): 1851–1854. https://doi.org/10.1016/S0273-1177(99)00597-9. [CrossRef] [Google Scholar]
- Horn BK, Schunck BG. 1981. Determining optical flow. Artif Intell 17(1–3): 185–203. [CrossRef] [Google Scholar]
- Hurlburt N, Cheung M, Schrijver C, Chang L, Freeland S, et al. 2012. Heliophysics event knowledgebase for the Solar Dynamics Observatory (SDO) and beyond. Sol Phys 275(1–2): 67–78. https://doi.org/10.1007/s11207-010-9624-2. [CrossRef] [Google Scholar]
- Hutton J, Morgan H. 2017. Automated detection of coronal mass ejections in three-dimensions using multi-viewpoint observations. A&A 599: A68. https://doi.org/10.1051/0004-6361/201629516. [CrossRef] [EDP Sciences] [Google Scholar]
- Joshi AD, Srivastava N. 2011. Acceleration of coronal mass ejections from three-dimensional reconstruction of STEREO images. Astrophys J 739(1): 8. https://doi.org/10.1088/0004-637X/739/1/8. [CrossRef] [Google Scholar]
- Kim T, Park E, Lee H, Moon Y-J, Bae S-H, et al. 2019. Solar farside magnetograms from deep learning analysis of STEREO/EUVI data. Nature Astron 3: 397–400. https://doi.org/10.1038/s41550-019-0711-5. [CrossRef] [Google Scholar]
- Klassen A, Aurass H, Mann G, Thompson BJ. 2000. Catalogue of the 1997 SOHO-EIT coronal transient waves and associated type II radio burst spectra. Astron Astrophys Supple 141: 357–369. https://doi.org/10.1051/aas:2000125. [CrossRef] [EDP Sciences] [Google Scholar]
- Kozarev KA, Davey A, Kendrick A, Hammer M, Keith C. 2017. The Coronal Analysis of SHocks and Waves (CASHeW) framework. J Space Weather Space Clim 7: A32. https://doi.org/10.1051/swsc/2017028. [CrossRef] [EDP Sciences] [Google Scholar]
- Kozarev KA, Dayeh MA, Farahat A. 2019. Early-stage solar energetic particle acceleration by coronal mass ejection-driven shocks with realistic seed spectra. I. Low corona. Astrophys J 871(1): 65. https://doi.org/10.3847/1538-4357/aaf1ce. [CrossRef] [Google Scholar]
- Kozarev KA, Korreck KE, Lobzin VV, Weber MA, Schwadron NA. 2011. Off-limb solar coronal wavefronts from SDO/AIA Extreme-ultraviolet Observations – implications for particle production. Astrophys J Lett 733: L25. https://doi.org/10.1088/2041-8205/733/2/L25. [CrossRef] [Google Scholar]
- Kozarev KA, Raymond JC, Lobzin VV, Hammer M. 2015. Properties of a coronal shock wave as a driver of early SEP acceleration. Astrophys J 799(2): 167. https://doi.org/10.1088/0004-637X/799/2/167. [CrossRef] [Google Scholar]
- Kozarev KA, Schwadron NA. 2016. A data-driven analytic model for proton acceleration by large-scale solar coronal shocks. Astrophys J 831: 120. https://doi.org/10.3847/0004-637X/831/2/120. [CrossRef] [Google Scholar]
- Lemen JR, Title AM, Akin DJ, Boerner PF, Chou C, et al. 2012. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol Phys 275(1–2): 17–40. https://doi.org/10.1007/s11207-011-9776-8. [Google Scholar]
- Li R, Zhu J. 2013. Solar flare forecasting based on sequential sunspot data. Res Astron Astrophys 13(9): 1118–1126. https://doi.org/10.1088/1674-4527/13/9/010. [CrossRef] [Google Scholar]
- Long DM, Bloomfield DS, Chen PF, Downs C, Gallagher PT, et al. 2017. Understanding the physical nature of coronal “EIT Waves”. Sol Phys 292(1): 7. https://doi.org/10.1007/s11207-016-1030-y. [CrossRef] [Google Scholar]
- Long DM, Bloomfield DS, Gallagher PT, Pérez-Suárez D. 2014. CorPITA: an automated algorithm for the identification and analysis of coronal “EIT waves”. Sol Phys 289: 3279–3295. https://doi.org/10.1007/s11207-014-0527-5. [CrossRef] [Google Scholar]
- Löptien B, Birch AC, Jr TLD, Gizon L, Schou J. 2016. Data compression for local correlation tracking of solar granulation. A&A 587: A9. Https://doi.org/10.1051/0004-6361/201526805. [CrossRef] [EDP Sciences] [Google Scholar]
- Lucas BD, Kanade T. 1981. An iterative image registration technique with an application to stereo vision. IJCAI’81: 7th international Joint Conference on Artificial Intelligence, Aug 1981, Vancouver, Canada, pp. 674–679. [Google Scholar]
- Majumdar S, Patel R, Pant V, Banerjee D. 2021. An insight into the coupling of CME kinematics in inner and outer corona and the imprint of source regions. Astrophys J 919(2): 115. https://doi.org/10.3847/1538-4357/ac1592. [CrossRef] [Google Scholar]
- McKenzie DE. 2013. Turbulent dynamics in solar flare sheet structures measured with local correlation tracking. Astrophys J 766(1): https://doi.org/10.1088/0004-637X/766/1/39. [CrossRef] [Google Scholar]
- Mierla M, Davila J, Thompson W, Inhester B, Srivastava N, Kramar M, St OC, Cyr G., Howard RA. 2008. A quick method for estimating the propagation direction of coronal mass ejections using STEREO-COR1 images. Sol Phys 252(2): 385–396. https://doi.org/10.1007/s11207-008-9267-8. [CrossRef] [Google Scholar]
- Moreton GE. 1960. Hα Observations of flare-initiated disturbances with velocities ∼1000 km/sec. Astron J 65: 494. https://doi.org/10.1086/108346. [CrossRef] [Google Scholar]
- Moreton GE, Ramsey HE. 1960. Recent observations of dynamical phenomena associated with solar flares. Publ Astron Soc Pac 72(428): 357. https://doi.org/10.1086/127549. [CrossRef] [Google Scholar]
- Morgan H, Habbal SR, Woo R. 2006. The depiction of coronal structure in white-light images. Sol Phys 236(2): 263–272. https://doi.org/10.1007/s11207-006-0113-6. [CrossRef] [Google Scholar]
- Patel R, Pant V, Iyer P, Banerjee D, Mierla M, West MJ. 2021. Automated detection of accelerating solar eruptions using parabolic hough transform. Sol Phys 296(2): 31. https://doi.org/10.1007/s11207-021-01770-z. [CrossRef] [Google Scholar]
- Patsourakos S, Vourlidas A, Wang YM, Stenborg G, Thernisien A. 2009. What is the nature of EUV waves? First STEREO 3D observations and comparison with theoretical models Sol Phys 259: 49–71. https://doi.org/10.1007/s11207-009-9386-x. [CrossRef] [Google Scholar]
- Pesnell WD, Thompson BJ, Chamberlin PC. 2012. The Solar Dynamics Observatory (SDO). Sol Phys 275(1–2): 3–15. https://doi.org/10.1007/s11207-011-9841-3. [CrossRef] [Google Scholar]
- Reiner MJ, Kaiser ML, Fainberg J, Stone RG. 1999. Remote radio tracking of CMEs in the solar corona and interplanetary medium. In: Solar Wind Nine, Habbal SR, Esser R, Hollweg JV, Isenberg PA (Eds.), vol. 471 of American Institute of Physics Conference Series, pp. 653–656. https://doi.org/10.1063/1.58709. [CrossRef] [Google Scholar]
- Sheeley J, Warren, NRHP. 2014. Using running difference images to track proper motions of XUV coronal intensity on the Sun. Astrophys J 797(2): 131. https://doi.org/10.1088/0004-637X/797/2/131. [CrossRef] [Google Scholar]
- St. Cyr OC, Posner A, Burkepile JT. 2017. Solar energetic particle warnings from a coronagraph. Space Weather 15(1): 240–257. https://doi.org/10.1002/2016SW001545. [CrossRef] [Google Scholar]
- Stepanyuk O, Kozarev K, Nedal M. 2022. Multi-scale image preprocessing and feature tracking for remote CME characterization. J Space Weather Space Clim 12: 20. https://doi.org/10.1051/swsc/2022020. [CrossRef] [EDP Sciences] [Google Scholar]
- Su Y, Veronig AM, Holman GD, Dennis BR, Wang T, Temmer M, Gan W. 2013. Imaging corona magnetic-field reconnection in a solar flare. Nature Phys. ArXiv:1307.4527. https://doi.org/10.1038/nphys2675. [Google Scholar]
- Szenicer A, Fouhey DF, Munoz-Jaramillo A, Wright PJ, Thomas R, Galvez R, Jin M, Cheung MCM. 2019. A deep learning virtual instrument for monitoring extreme UV solar spectral irradiance. Science. Advances 5(10): eaaw6548. https://doi.org/10.1126/sciadv.aaw6548. [Google Scholar]
- Telloni D, Zank GP, Stangalini M, Downs C, Liang H, et al. 2022. Observation of a magnetic switchback in the solar corona. Astrophys J Lett 936(2): L25. https://doi.org/10.3847/2041-8213/ac8104. [CrossRef] [Google Scholar]
- Temmer M, Veronig AM, Vršnak B, Rybák J, Gömöry P, Stoiser S, Maričić D. 2008. Acceleration in fast halo CMEs and synchronized flare HXR bursts. Astrophys J 673(1): L95. https://doi.org/10.1086/527414. [CrossRef] [Google Scholar]
- The SunPy Community, Barnes WT, Bobra MG, Christe SD, Freij N, et al. 2020. The SunPy project: Open source development and status of the version 1.0 core package. Astrophys J 890: 68. https://doi.org/10.3847/1538-4357/ab4f7a. [CrossRef] [Google Scholar]
- Thernisien A, Vourlidas A, Howard RA. 2009. Forward Modeling of Coronal Mass Ejections Using STEREO/SECCHI Data. Sol Phys 256(1–2): 111–130. https://doi.org/10.1007/s11207-009-9346-5. [CrossRef] [Google Scholar]
- Thompson BJ, Plunkett SP, Gurman JB, Newmark JS, St. Cyr OC, Michels DJ. 1998. SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997. Geophys Res Lett 25: 2465–2468. https://doi.org/10.1029/98GL50429. [CrossRef] [Google Scholar]
- Tomczyk S, Burkepile J, De A, Gibson S, Gilbert H, et al. 2022. The Coronal Solar Magnetism Observatory. The Third Triennial Earth-Sun Summit (TESS) 54: 1–2. [Google Scholar]
- Tripathi D, Raouafi NE. 2007. On the relationship between coronal waves associated with a CME on 5 March 2000. A&A 473(3): 951–957. https://doi.org/10.1051/0004-6361:20077255. [CrossRef] [EDP Sciences] [Google Scholar]
- Uchida Y. 1968. Propagation of hydromagnetic disturbances in the solar corona and Moreton’s wave phenomenon. Sol Phys 4(1): 30–44. https://doi.org/10.1007/BF00146996. [CrossRef] [Google Scholar]
- Uchida Y. 1974. Behaviour of the flare-produced coronal MHD wavefront and the occurrence of Type II radio bursts. Sol Phys 39(2): 431–449. https://doi.org/10.1007/BF00162436. [CrossRef] [Google Scholar]
- Veronig AM, Muhr N, Kienreich IW, Temmer M, Vršnak B. 2010. First observations of a dome-shaped large-scale coronal extreme-ultraviolet wave. Astrophys J 716(1): L57–L62. https://doi.org/10.1088/2041-8205/716/1/L57. [CrossRef] [Google Scholar]
- Vourlidas A, Lynch BJ, Howard RA, Li Y. 2013. How many CMEs have flux ropes? Deciphering the signatures of shocks, flux ropes, and prominences in coronagraph observations of CMEs Sol Phys 284(1): 179–201. [Google Scholar]
- Vrsnak B, Ruzdjak V, Zlobec P, Aurass H. 1995. Ignition of MHD shocks associated with solar flares. Sol Phys 158(2): 331–351. https://doi.org/10.1007/BF00795667. [CrossRef] [Google Scholar]
- Wang H, Shen C, Lin J. 2009. Numerical experiments of wave-like phenomena caused by the disruption of an unstable magnetic configuration. Astrophys J 700(2): 1716–1731. https://doi.org/10.1088/0004-637X/700/2/1716. [CrossRef] [Google Scholar]
- Webb DF, Howard TA. 2012. Coronal mass ejections: observations. Living Rev Sol Phys 9(1): 3. https://doi.org/10.12942/lrsp-2012-3. [Google Scholar]
- Welsch BT, Fisher GH, Abbett WP, Regnier S. 2004. ILCT: Recovering photospheric velocities from longitudinal magnetograms. Astrophys J 610(2): 1148. [CrossRef] [Google Scholar]
- Welsch BT, Fisher GH, Abbett WP, Regnier S. 2004. ILCT: Recovering photospheric velocities from magnetograms by combining the induction equation with local correlation tracking. Astrophys J 610(2): 1148–1156. https://doi.org/10.1086/421767. [CrossRef] [Google Scholar]
- Wild JP, McCready LL. 1950. Observations of the spectrum of high-intensity solar radiation at metre wavelengths. I. The apparatus and spectral types of solar burst observed. Aust J Sci Res A Phys Sci 3: 387. https://doi.org/10.1071/CH9500387. [Google Scholar]
- Zhang J, Dere KP. 2006. A statistical study of main and residual accelerations of coronal mass ejections. Astrophys J 649(2): 1100–1109. https://doi.org/10.1086/506903. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.