Issue |
J. Space Weather Space Clim.
Volume 14, 2024
Topical Issue - CMEs, ICMEs, SEPs: Observational, Modelling, and Forecasting Advances
|
|
---|---|---|
Article Number | 3 | |
Number of page(s) | 17 | |
DOI | https://doi.org/10.1051/swsc/2024001 | |
Published online | 20 February 2024 |
- Acuña MH, Curtis D, Scheifele JL, Russell CT, Schroeder P, Szabo A, Luhmann JG. 2008. The STEREO/IMPACT magnetic field experiment 136(1–4): 203–226. https://doi.org/10.1007/s11214-007-9259-2. [Google Scholar]
- Aminalragia-Giamini S, Raptis S, Anastasiadis A, Tsigkanos A, Sandberg I, Papaioannou A, Papadimitriou C, Jiggens P, Aran A, Daglis IA. 2021. Solar energetic particle event occurrence prediction using solar flare soft X-ray measurements and machine learning 11: 59. https://doi.org/10.1051/swsc/2021043. [Google Scholar]
- Anastasiadis A, Lario D, Papaioannou A, Kouloumvakos A, Vourlidas A. 2019. Solar energetic particles in the inner heliosphere: status and open questions. Philos Trans A Math Phys Eng Sci 377(2148): 20180100. https://doi.org/10.1098/rsta.2018.0100. [Google Scholar]
- Anastasiadis A, Papaioannou A, Sandberg I, Georgoulis M, Tziotziou K, Kouloumvakos A, Jiggens P. 2017. Predicting flares and solar energetic particle events: the FORSPEF tool. Solar Phys 292(9): 134. https://doi.org/10.1007/s11207-017-1163-7. [CrossRef] [Google Scholar]
- Arge CN, Luhmann JG, Odstrcil D, Schrijver CJ, Li Y. 2004. Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME. J Atmos Solar-Terr Phys 66(15–16): 1295–1309. https://doi.org/10.1016/j.jastp.2004.03.018. [CrossRef] [Google Scholar]
- Arge CN, Pizzo VJ. 2000. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J Geophys Res Space Phys 105(A5): 10465–10480. https://doi.org/10.1029/1999JA000262. [CrossRef] [Google Scholar]
- Bain HM, Mays ML, Luhmann JG, Li Y, Jian LK, Odstrcil D. 2016. Shock connectivity in the August 2010 and July 2012 solar energetic particle events inferred from observations and ENLIL modeling. Astrophys J 825(1): 1. https://doi.org/10.3847/0004-637X/825/1/1. [CrossRef] [Google Scholar]
- Balch CC. 1999. SEC proton prediction model: verification and analysis. Radiat Meas 30(3): 231–250. https://doi.org/10.1016/s1350-4487(99)00052-9. [CrossRef] [Google Scholar]
- Balch CC. 2008. Updated verification of the Space Weather Prediction Center’s solar energetic particle prediction model. Space Weather 6(1): S01001. https://doi.org/10.1029/2007SW000337. [Google Scholar]
- Bale SD, Goetz K, Harvey PR, Turin P, Bonnell JW, et al. 2016. The FIELDS instrument suite for solar probe plus. Measuring the coronal plasma and magnetic field, plasma waves and turbulence, and radio signatures of solar transients. Space Sci Rev 204(1–4): 49–82. https://doi.org/10.1007/s11214-016-0244-5. [CrossRef] [Google Scholar]
- Bellman R, Kalaba R. 1959. On adaptive control processes. IEEE Trans Automat Contr 4(2): 1–9. https://doi.org/10.1109/TAC.1959.1104847. [CrossRef] [Google Scholar]
- Benkhoff J, Murakami G, Baumjohann W, Besse S, Bunce E, et al. 2021. BepiColombo – mission overview and science goals. Space Sci Rev 217(8): 90. https://doi.org/10.1007/s11214-021-00861-4. [CrossRef] [Google Scholar]
- Bertello L, Pevtsov AA, Petrie GJD, Keys D. 2014. Uncertainties in Solar Synoptic Magnetic Flux Maps.. Sol Phy 289(7): 2419–2431. https://doi.org/10.1007/s11207-014-0480-3. [CrossRef] [Google Scholar]
- Brueckner GE, Howard RA, Koomen MJ, Korendyke CM, Michels DJ, et al. 1995. The Large Angle Spectroscopic Coronagraph (LASCO). Sol Phys 162(1–2): 357–402. https://doi.org/10.1007/BF00733434. [CrossRef] [Google Scholar]
- Bruno A, Richardson IG. 2021. Empirical model of 10–130 MeV solar energetic particle spectra at 1 AU based on coronal mass ejection speed and direction. Sol Phys 296(2): 36. https://doi.org/10.1007/s11207-021-01779-4. [CrossRef] [Google Scholar]
- Cane HV, Richardson IG, von Rosenvinge TT. 2010. A study of solar energetic particle events of 1997–2006: Their composition and associations. J Geophys Res Space Phys 115(A8): A08101. https://doi.org/10.1029/2009JA014848. [Google Scholar]
- Caplan RM, Downs C, Linker JA, Mikic Z. 2021. Variations in finite-difference potential fields. Astrophys J 915(1): 44. https://doi.org/10.3847/1538-4357/abfd2f. [CrossRef] [Google Scholar]
- Case AW, Kasper JC, Stevens ML, Korreck KE, Paulson K, et al. 2020. The Solar probe cup on the parker solar probe. Astrophys J Suppl 246(2): 43. https://doi.org/10.3847/1538-4365/ab5a7b. [CrossRef] [Google Scholar]
- Cohen CMS, Mason GM, Mewaldt RA, Wiedenbeck ME. 2014. The Longitudinal dependence of heavy-ion composition in the 2013 April 11 solar energetic particle event. Astrophys J 793(1): 35. https://doi.org/10.1088/0004-637X/793/1/35. [CrossRef] [Google Scholar]
- Desai M, Giacalone J. 2016. Large gradual solar energetic particle events. Living Rev Sol Phys 13(1): 3. https://doi.org/10.1007/s41116-016-0002-5. [CrossRef] [Google Scholar]
- Ding Z, Wijsen N, Li G, Poedts S. 2022. Modeling the 2020 November 29 solar energetic particle event using EUHFORIA and iPATH models. A&A 668: A71. https://doi.org/10.1051/0004-6361/202244732. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Domingo V, Fleck B, Poland AI. 1995. The SOHO mission: an overview. Sol Phys 162(1–2): 1–37. https://doi.org/10.1007/BF00733425. [CrossRef] [Google Scholar]
- Dresing N, Gómez-Herrero R, Heber B, Klassen A, Malandraki O, Dröge W, Kartavykh Y. 2014. Statistical survey of widely spread out solar electron events observed with STEREO and ACE with special attention to anisotropies. A&A 567: A27. https://doi.org/10.1051/0004-6361/201423789. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Dresing N, Rodríguez-García L, Jebaraj IC, Warmuth A, Wallace S, et al. 2023. The 17 April 2021 widespread solar energetic particle event. A&A 674: A105. https://doi.org/10.1051/0004-6361/202345938. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Dumbović M, Vršnak B, Guo J, Heber B, Dissauer K, et al. 2020. Evolution of coronal mass ejections and the corresponding Forbush decreases: modeling vs. multi-spacecraft observations. Sol Phys 295(7): 104. https://doi.org/10.1007/s11207-020-01671-7. [CrossRef] [Google Scholar]
- Fox NJ, Velli MC, Bale SD, Decker R, Driesman A, et al. 2016. The solar probe plus mission: humanity’s first visit to our star. Space Sci Rev 204(1–4): 7–48. https://doi.org/10.1007/s11214-015-0211-6. [CrossRef] [Google Scholar]
- Galvin AB, Kistler LM, Popecki MA, Farrugia CJ, Simunac KDC, et al. 2008. The plasma and suprathermal ion composition (PLASTIC) investigation on the STEREO observatories. Space Sci Rev 136(1–4): 437–486. https://doi.org/10.1007/s11214-007-9296-x. [CrossRef] [Google Scholar]
- Giacalone J, Jokipii JR. 2001. The transport of energetic particles and cosmic rays in the heliosphere. Adv Space Res 27(3): 461–469. https://doi.org/10.1016/S0273-1177(01)00075-8. [CrossRef] [Google Scholar]
- Gopalswamy N, Yashiro S, Michalek G, Stenborg G, Vourlidas A, Freeland S, Howard R. 2009. The SOHO/LASCO CME catalog. Earth Moon Planets 104(1–4): 295–313. https://doi.org/10.1007/s11038-008-9282-7. [NASA ADS] [CrossRef] [Google Scholar]
- Gressl C, Veronig AM, Temmer M, Odstrčil D, Linker JA, Mikić Z, Riley P. 2014. Comparative study of MHD modeling of the background solar wind. Sol Phys 289(5): 1783–1801. https://doi.org/10.1007/s11207-013-0421-6. [CrossRef] [Google Scholar]
- Harvey JW, Hill F, Hubbard RP, Kennedy JR, Leibacher JW, et al. 1996. The Global Oscillation Network Group (GONG) project. Science 272(5266): 1284–1286. https://doi.org/10.1126/science.272.5266.1284. [CrossRef] [Google Scholar]
- Heyner D, Auster HU, Fornaçon KH, Carr C, Richter I, et al. 2021. The BepiColombo planetary magnetometer MPO-MAG: what can we learn from the Hermean magnetic field? Space Sci Rev 217(4): 52. https://doi.org/10.1007/s11214-021-00822-x. [CrossRef] [Google Scholar]
- Horbury TS, O’Brien H, Carrasco Blazquez I, Bendyk M, Brown P, et al. 2020. The solar orbiter magnetometer. A&A 642: A9. https://doi.org/10.1051/0004-6361/201937257. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Howard RA, Moses JD, Vourlidas A, Newmark JS, Socker DG, et al. 2008. Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci Rev 136(1–4): 67–115. https://doi.org/10.1007/s11214-008-9341-4. [CrossRef] [Google Scholar]
- Jebaraj IC, Kouloumvakos A, Dresing N, Warmuth A, Wijsen N, et al. 2023. Multiple injections of energetic electrons associated with the flare and CME event on October 2021. A&A 675: A27. https://doi.org/10.1051/0004-6361/202245716. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Jian LK, MacNeice PJ, Taktakishvili A, Odstrcil D, Jackson B, Yu HS, Riley P, Sokolov IV, Evans RM. 2015. Validation for solar wind prediction at Earth: comparison of coronal and heliospheric models installed at the CCMC. Space Weather 13(5): 316–338. https://doi.org/10.1002/2015SW001174. [CrossRef] [Google Scholar]
- Jones FC, Ellison DC. 1991. The plasma physics of shock acceleration. Space Sci Rev 58(1): 259–346. https://doi.org/10.1007/BF01206003. [CrossRef] [Google Scholar]
- Kahler SW, Ling AG. 2022. A comparison of solar X-ray flare timescales and peak temperatures with associated coronal mass ejections. Astrophys J 934(2): 175. https://doi.org/10.3847/1538-4357/ac7e56. [CrossRef] [Google Scholar]
- Kaiser ML, Kucera TA, Davila JM, St OC, Cyr M Guhathakurta, Christian E. 2008. The STEREO mission: an introduction. Space Sci Rev 136(1–4): 5–16. https://doi.org/10.1007/s11214-007-9277-0. [CrossRef] [Google Scholar]
- Kasapis S, Zhao L, Chen Y, Wang X, Bobra M, Gombosi T. 2022. Interpretable machine learning to forecast SEP events for solar cycle 23. Space Weather 20(2): e2021SW002842. https://doi.org/10.1029/2021SW002842. [CrossRef] [Google Scholar]
- Kasper JC, Abiad R, Austin G, Balat-Pichelin M, Bale SD, et al. 2016. Solar wind electrons alphas and protons (SWEAP) investigation: design of the solar wind and coronal plasma instrument suite for solar probe plus. Space Sci Rev 204(1–4): 131–186. https://doi.org/10.1007/s11214-015-0206-3. [CrossRef] [Google Scholar]
- Kollhoff A, Kouloumvakos A, Lario D, Dresing N, Gómez-Herrero R, et al. 2021. The first widespread solar energetic particle event observed by Solar Orbiter on 2020 November 29. A&A 656: A20. https://doi.org/10.1051/0004-6361/202140937. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Kozarev KA, Raymond JC, Lobzin VV, Hammer M. 2015. Properties of a coronal shock wave as a driver of early SEP acceleration. Astrophys J 799(2): 167. https://doi.org/10.1088/0004-637X/799/2/167. [CrossRef] [Google Scholar]
- Kwon R-Y, Zhang J, Olmedo O. 2014. New insights into the physical nature of coronal mass ejections and associated shock waves within the framework of the three-dimensional structure. Astrophys J 794(2): 148. https://doi.org/10.1088/0004-637X/794/2/148. [CrossRef] [Google Scholar]
- Laitinen T, Dalla S, Marsh MS. 2013. Energetic particle cross-field propagation early in a solar event. Astrophys J Lett 773(2): L29. https://doi.org/10.1088/2041-8205/773/2/L29. [CrossRef] [Google Scholar]
- Laperre B, Amaya J, Lapenta G. 2020. Dynamic time warping as a new evaluation for Dst forecast with machine learning. Front Astron Space Sci 7: 39. https://doi.org/10.3389/fspas.2020.00039. [CrossRef] [Google Scholar]
- Lario D, Karelitz A. 2014. Influence of interplanetary coronal mass ejections on the peak intensity of solar energetic particle events. J Geophys Res Space Phys 119(6): 4185–4209. https://doi.org/10.1002/2014JA019771. [CrossRef] [Google Scholar]
- Lario D, Kwon RY, Vourlidas A, Raouafi NE, Haggerty DK, et al. 2016. Longitudinal properties of a widespread solar energetic particle event on 2014 February 25: evolution of the associated CME shock. Astrophys J 819(1): 72. https://doi.org/10.3847/0004-637X/819/1/72. [CrossRef] [Google Scholar]
- Lario D, Raouafi NE, Kwon RY, Zhang J, Gómez-Herrero R, Dresing N, Riley P. 2014. The solar energetic particle event on 2013 April 11: an investigation of its solar origin and longitudinal spread. Astrophys J 797(1): 8. https://doi.org/10.1088/0004-637X/797/1/8. [CrossRef] [Google Scholar]
- Lario D, Sanahuja B, Heras AM. 1998. Energetic particle events: efficiency of interplanetary shocks as 50 keV < E < 100 MeV proton accelerators. Astrophys J 509(1): 415–434. https://doi.org/10.1086/306461. [CrossRef] [Google Scholar]
- Lario D, Wijsen N, Kwon RY, Sánchez-Cano B, Richardson IG, et al. 2022. Influence of large-scale interplanetary structures on the propagation of solar energetic particles: the multispacecraft event on 2021 October 9. Astrophys J 934(1): 55. https://doi.org/10.3847/1538-4357/ac6efd. [CrossRef] [Google Scholar]
- Laurenza M, Alberti T, Cliver EW. 2018. A Short-term ESPERTA-based forecast tool for moderateto-extreme solar proton events. Astrophys J 857(2): 107. https://doi.org/10.3847/1538-4357/aab712. [CrossRef] [Google Scholar]
- Lavasa E, Giannopoulos G, Papaioannou A, Anastasiadis A, Daglis IA, Aran A, Pacheco D, Sanahuja B. 2021. Assessing the predictability of solar energetic particles with the use of machine learning techniques. Sol Phys 296(7): 107. https://doi.org/10.1007/s11207-021-01837-x. [CrossRef] [Google Scholar]
- Lee CO, Arge CN, Odstrcil D, Millward G, Pizzo V, Lugaz N. 2015. Ensemble modeling of successive halo CMEs: a case study. Sol Phys 290(4): 1207–1229. https://doi.org/10.1007/s11207-015-0667-2. [CrossRef] [Google Scholar]
- Lemen JR, Title AM, Akin DJ, Boerner PF, Chou C, et al. 2012. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol Phys 275(1–2): 17–40. https://doi.org/10.1007/s11207-011-9776-8. [Google Scholar]
- Lepping RP, Acũna MH, Burlaga LF, Farrell WM, Slavin JA, et al. 1995. The wind magnetic field investigation. Space Sci Rev 71(1–4): 207–229. https://doi.org/10.1007/BF00751330. [CrossRef] [Google Scholar]
- Li G, Jin M, Ding Z, Bruno A, de Nolfo GA, Randol BM, Mays L, Ryan J, Lario D. 2021. Modeling the 2012 May 17 solar energetic particle event using the awsom and iPATH models. Astrophys J 919(2): 146. https://doi.org/10.3847/1538-4357/ac0db9. [CrossRef] [Google Scholar]
- Lin RP. 2011. Energy release and particle acceleration in flares: summary and future prospects. Space Sci Rev 159(1–4): 421–445. https://doi.org/10.1007/s11214-011-9801-0. [CrossRef] [Google Scholar]
- Linker JA, Caplan RM, Schwadron N, Gorby M, Downs C, Torok T, Lionello R, Wijaya J. 2019. Coupled MHD-focused transport simulations for modeling solar particle events. J Phys Conf Ser 1225: 012007. https://doi.org/10.1088/1742-6596/1225/1/012007. [CrossRef] [Google Scholar]
- Liu YD, Zhao X, Hu H, Vourlidas A, Zhu B. 2019a. A comparative study of 2017 July and 2012 July complex eruptions: are solar superstorms “perfect storms” in nature? Astrophys J Suppl 241(2): 15. https://doi.org/10.3847/1538-4365/ab0649. [CrossRef] [Google Scholar]
- Liu YD, Zhu B, Zhao X. 2019b. Geometry, kinematics, and heliospheric impact of a large CME-driven Shock in 2017 September. Astrophys J 871(1): 8. https://doi.org/10.3847/1538-4357/aaf425. [CrossRef] [Google Scholar]
- Luhmann JG, Curtis DW, Schroeder P, McCauley J, Lin RP, et al. 2008. STEREO IMPACT investigation goals, measurements, and data products overview. Space Sci Rev 136(1–4): 117–184. https://doi.org/10.1007/s11214-007-9170-x. [CrossRef] [Google Scholar]
- Luhmann JG, Ledvina SA, Krauss-Varban D, Odstrcil D, Riley P. 2007. A heliospheric simulation-based approach to SEP source and transport modeling. Adv Space Res 40(3): 295–303. https://doi.org/10.1016/j.asr.2007.03.089. [CrossRef] [Google Scholar]
- Luhmann JG, Ledvina SA, Odstrcil D, Owens MJ, Zhao XP, Liu Y, Riley P. 2010. Cone model-based SEP event calculations for applications to multipoint observations. Adv Space Res 46(1): 1–21. https://doi.org/10.1016/j.asr.2010.03.011. [CrossRef] [Google Scholar]
- Luhmann JG, Li Y, Bercik DJ, Wang L, Odstrcil D. 2012. Issues in heliospheric field mapping to flare SEP sources. In: Space Weather: the Space Radiation Environment: 11th Annual International AstroPhysics Conference, vol. 1500 of American Institute of Physics Conference Series, Hu Q, Li G, Zank GP, Ao X, Verkhoglyadova O, Adams JH (Eds.), AIP, Melville, NY. pp. 3–13. https://doi.org/10.1063/1.4768737. [Google Scholar]
- Magdalenić J, Marqué C, Zhukov AN, Vršnak B, Žic T. 2010. Origin of Coronal shock waves associated with slow coronal mass ejections. Astrophys J 718(1): 266–278. https://doi.org/10.1088/0004-637X/718/1/266. [CrossRef] [Google Scholar]
- Maharana A, Isavnin A, Scolini C, Wijsen N, Rodriguez L, Mierla M, Magdalenić J, Poedts S. 2022. Implementation and validation of the FRi3D flux rope model in EUHFORIA. Adv Space Res 70(6): 1641–1662. https://doi.org/10.1016/j.asr.2022.05.056. [CrossRef] [Google Scholar]
- Masson S, Antiochos SK, DeVore CR. 2019. Escape of flare-accelerated particles in solar eruptive events. Astrophys J 884(2): 143. https://doi.org/10.3847/1538-4357/ab4515. [CrossRef] [Google Scholar]
- Mays ML, Thompson BJ, Jian LK, Colaninno RC, Odstrcil D, et al. 2015. Propagation of the January 2014 CME and resulting geomagnetic non-event. Astrophys J 812(2): 145. https://doi.org/10.1088/0004-637X/812/2/145. [CrossRef] [Google Scholar]
- McComas DJ, Alexander N, Angold N, Bale S, Beebe C, et al. 2016. Integrated science investigation of the Sun (ISIS): design of the energetic particle investigation. Space Sci Rev 204(1–4): 187–256. https://doi.org/10.1007/s11214-014-0059-1. [CrossRef] [Google Scholar]
- Mewaldt RA, Cohen CMS, Cook WR, Cummings AC, Davis AJ, et al. 2008. The low-energy telescope (LET) and SEP central electronics for the STEREO mission. Space Sci Rev 136(1–4): 285–362. https://doi.org/10.1007/s11214-007-9288-x. [CrossRef] [Google Scholar]
- Müller D, St OC, Cyr I, Zouganelis HR, Gilbert R Marsden, et al. 2020. The solar orbiter mission – science overview. A&A 642: A1. https://doi.org/10.1051/0004-6361/202038467. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Müller-Mellin R, Kunow H, Fleißner V, Pehlke E, Rode E, et al. 1995. COSTEP – comprehensive suprathermal and energetic particle analyser. Sol Phys 162(1–2): 483–504. https://doi.org/10.1007/BF00733437. [Google Scholar]
- Nitta NV, Reames DV, De Rosa ML, Liu Y, Yashiro S, Gopalswamy N. 2006. Solar sources of impulsive solar energetic particle events and their magnetic field connection to the Earth. Astrophys J 650(1): 438–450. https://doi.org/10.1086/507442. [CrossRef] [Google Scholar]
- Núñez M, Reyes-Santiago PJ, Malandraki OE. 2017. Real-time prediction of the occurrence of GLE events. Space Weather 15(7): 861–873. https://doi.org/10.1002/2017SW001605. [CrossRef] [Google Scholar]
- Odstrcil D. 2003. Modeling 3-D solar wind structure. Adv Space Res 32(4): 497–506. https://doi.org/10.1016/S0273-1177(03)00332-6. [CrossRef] [Google Scholar]
- Odstrcil D, Riley P, Zhao XP. 2004. Numerical simulation of the 12 May 1997 interplanetary CME event. J Geophys Res 109(A2): A02116. https://doi.org/10.1029/2003JA010135. [Google Scholar]
- Ogilvie KW, Chornay DJ, Fritzenreiter RJ, Hunsaker F, Keller J, et al. 1995. SWE, a comprehensive plasma instrument for the wind spacecraft. Space Sci Rev 71(1–4): 55–77. https://doi.org/10.1007/BF00751326. [CrossRef] [Google Scholar]
- Ogilvie KW, Desch MD. 1997. The wind spacecraft and its early scientific results. Adv Space Res 20(4–5): 559–568. https://doi.org/10.1016/S0273-1177(97)00439-0. [CrossRef] [Google Scholar]
- Owen CJ, Bruno R, Livi S, Louarn P, Al Janabi K, et al. 2020. The Solar Orbiter Solar Wind Analyser (SWA) suite. A&A 642: A16. https://doi.org/10.1051/0004-6361/201937259. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Palmerio E, Kilpua EKJ, Witasse O, Barnes D, Sánchez-Cano B, et al. 2021. CME Magnetic structure and IMF preconditioning affecting SEP transport. Space Weather 19(4): e2020SW002654. https://doi.org/10.1029/2020SW002654. [NASA ADS] [CrossRef] [Google Scholar]
- Palmerio E, Lee CO, Mays ML, Luhmann JG, Lario D, et al. 2022. CMEs and SEPs during November–December 2020: a challenge for real-time space weather forecasting. Space Weather 20(5): e2021SW002993. https://doi.org/10.1029/2021SW002993. [NASA ADS] [Google Scholar]
- Paouris E, Călogović J, Dumbović M, Mays ML, Vourlidas A, Papaioannou A, Anastasiadis A, Balasis G. 2021. Propagating conditions and the time of ICME arrival: a comparison of the effective acceleration model with ENLIL and DBEM models. Sol Phys 296(1): 12. https://doi.org/10.1007/s11207-020-01747-4. [CrossRef] [Google Scholar]
- Papaioannou A, Sandberg I, Anastasiadis A, Kouloumvakos A, Georgoulis MK, Tziotziou K, Tsiropoula G, Jiggens P, Hilgers A. 2016. Solar flares, coronal mass ejections and solar energetic particle event characteristics. J Space Weather Space Clim 6: A42. https://doi.org/10.1051/swsc/2016035. [CrossRef] [EDP Sciences] [Google Scholar]
- Parenti S, Chifu I, Del Zanna G, Edmondson J, Giunta A, et al. 2021. Linking the Sun to the heliosphere using composition data and modelling. Space Sci Rev 217(8): 78. https://doi.org/10.1007/s11214-021-00856-1. [CrossRef] [Google Scholar]
- Pesnell WD, Thompson BJ, Chamberlin PC. 2012. The solar dynamics observatory (SDO). Sol Phys 275(1–2): 3–15. https://doi.org/10.1007/s11207-011-9841-3. [Google Scholar]
- Pinto M, Sanchez-Cano B, Moissl R, Benkhoff J, Cardoso C, et al. 2022. The BepiColombo environment radiation monitor. BERM. Space Sci Rev 218(7): 54. https://doi.org/10.1007/s11214-022-00922-2. [CrossRef] [Google Scholar]
- Pomoell J, Poedts S. 2018. EUHFORIA: European heliospheric forecasting information asset. J Space Weather Space Clim 8: A35. https://doi.org/10.1051/swsc/2018020. [Google Scholar]
- Posner A. 2007. Up to 1-hour forecasting of radiation hazards from solar energetic ion events with relativistic electrons. Space Weather 5(5): 05001. https://doi.org/10.1029/2006SW000268. [Google Scholar]
- Qin G, Zhang M, Dwyer JR, Rassoul HK. 2004. Interplanetary transport mechanisms of solar energetic particles. Astrophys J 609(2): 1076–1081. https://doi.org/10.1086/421101. [CrossRef] [Google Scholar]
- Reames DV. 1999. Particle acceleration at the Sun and in the heliosphere. Space Sci Rev 90: 413–491. https://doi.org/10.1023/A:1005105831781. [CrossRef] [Google Scholar]
- Reiss MA, Arge CN, Henney CJ, Klimchuk JA, Linker JA, Muglach K, Pevtsov AA, Pinto RF, Schonfeld SJ. 2023a. Progress and challenges in understanding the ambient solar magnetic field, heating, and spectral irradiance. Adv Space Res, in press. https://doi.org/10.1016/j.asr.2023.08.039. [Google Scholar]
- Reiss MA, Muglach K, Mullinix R, Kuznetsova MM, Wiegand C, et al. 2023b. Unifying the validation of ambient solar wind models. Adv Space Res 72(12): 5275–5286. https://doi.org/10.1016/j.asr.2022.05.026. [CrossRef] [Google Scholar]
- Richardson IG, Cane HV. 1996. Particle flows observed in ejecta during solar event onsets and their implication for the magnetic field topology. J Geophys Res 101(A12): 27521–27532. https://doi.org/10.1029/96JA02643. [CrossRef] [Google Scholar]
- Richardson IG, von Rosenvinge TT, Cane HV, Christian ER, Cohen CMS, Labrador AW, Leske RA, Mewaldt RA, Wiedenbeck ME, Stone EC. 2014. > 25 MeV Proton events observed by the high energy telescopes on the STEREO A and B spacecraft and/or at earth during the first ~ seven years of the STEREO mission. Sol Phys 289(8): 3059–3107. https://doi.org/10.1007/s11207-014-0524-8. [CrossRef] [Google Scholar]
- Riley P, Ben-Nun M, Linker JA, Mikic Z, Svalgaard L, Harvey J, Bertello L, Hoeksema T, Liu Y, Ulrich R. 2014. A multi-observatory inter-comparison of line-of-sight synoptic solar magnetograms. Sol Phys 289(3): 769–792. https://doi.org/10.1007/s11207-013-0353-1. [CrossRef] [Google Scholar]
- Riley P, Mays ML, Andries J, Amerstorfer T, Biesecker D, et al. 2018. Forecasting the arrival time of coronal mass ejections: analysis of the CCMC CME scoreboard. Space Weather 16(9): 1245–1260. https://doi.org/10.1029/2018SW001962. [CrossRef] [Google Scholar]
- Rodríguez-Pacheco J, Wimmer-Schweingruber RF, Mason GM, Ho GC, Sánchez-Prieto S, et al. 2020. The energetic particle detector. Energetic particle instrument suite for the solar orbiter mission. A&A 642: A7. https://doi.org/10.1051/0004-6361/201935287. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Rouillard AP, Sheeley NR, Tylka A, Vourlidas A, Ng CK, et al. 2012. The Longitudinal properties of a solar energetic particle event investigated using modern solar imaging. Astrophys J 752(1): 44. https://doi.org/10.1088/0004-637X/752/1/44. [CrossRef] [Google Scholar]
- Samara E, Laperre B, Kieokaew R, Temmer M, Verbeke C, Rodriguez L, Magdalenić J, Poedts S. 2022. Dynamic time warping as a means of assessing solar wind time series. Astrophys J 927(2): 187. https://doi.org/10.3847/1538-4357/ac4af6. [CrossRef] [Google Scholar]
- Schwadron NA, Townsend L, Kozarev K, Dayeh MA, Cucinotta F, et al. 2010. Earth-Moon-Mars radiation environment module framework. Space Weather 8(10): S00E02. https://doi.org/10.1029/2009SW000523. [Google Scholar]
- Scolini C, Rodriguez L, Mierla M, Pomoell J, Poedts S. 2019. Observation-based modelling of magnetised coronal mass ejections with EUHFORIA. A&A 626: A122. https://doi.org/10.1051/0004-6361/201935053. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Singh T, Kim TK, Pogorelov NV, Arge CN. 2022. Ensemble simulations of the 2012 July 12 coronal mass ejection with the constant-turn flux rope model. Astrophys J 933(2): 123. https://doi.org/10.3847/1538-4357/ac73f3. [CrossRef] [Google Scholar]
- Sokolov IV, Roussev II, Gombosi TI, Lee MA, Kóta J, Forbes TG, Manchester WB, Sakai JI. 2004. A new field line advection model for solar particle acceleration. Astrophys J Lett. 616(2): L171–L174. https://doi.org/10.1086/426812. [CrossRef] [Google Scholar]
- Temmer M, Scolini C, Richardson IG, Heinemann SG, Paouris E, et al. 2023. CME propagation through the heliosphere: status and future of observations and model development. Adv Space Res, in press. https://doi.org/10.1016/j.asr.2023.07.003. [Google Scholar]
- Tenishev V, Shou Y, Borovikov D, Lee Y, Fougere N, Michael A, Combi MR. 2021. Application of the Monte Carlo method in modeling dusty gas, dust in plasma, and energetic ions in planetary, magnetospheric, and heliospheric environments. J Geophys Res Space Phys 126(2): e28242. https://doi.org/10.1029/2020JA028242. [CrossRef] [Google Scholar]
- Thernisien A. 2011. Implementation of the graduated cylindrical shell model for the three-dimensional reconstruction of coronal mass ejections. Astrophys J Suppl 194(2): 33. https://doi.org/10.1088/0067-0049/194/2/33. [CrossRef] [Google Scholar]
- Trottet G, Samwel S, Klein KL, Dudok de Wit T, Miteva R. 2015. Statistical evidence for contributions of flares and coronal mass ejections to major solar energetic particle events. Sol Phys 290(3): 819–839. https://doi.org/10.1007/s11207-014-0628-1. [CrossRef] [Google Scholar]
- Verbeke C, Mays ML, Kay C, Riley P, Palmerio E, et al. 2023. Quantifying errors in 3D CME parameters derived from synthetic data using white-light reconstruction techniques. Adv Space Res 72(12): 5243–5262. https://doi.org/10.1016/j.asr.2022.08.056. [CrossRef] [Google Scholar]
- von Rosenvinge TT, Reames DV, Baker R, Hawk J, Nolan JT, et al. 2008. The high energy telescope for STEREO. Space Sci Rev 136(1–4): 391–435. https://doi.org/10.1007/s11214-007-9300-5. [CrossRef] [Google Scholar]
- Vršnak B, Cliver EW. 2008. Origin of coronal shock waves. Invited review. Sol Phys 253(1–2): 215. https://doi.org/10.1007/s11207-008-9241-5. [CrossRef] [Google Scholar]
- Wang YM, Sheeley Jr. NR. 1992. On potential field models of the solar corona. Astrophys J 392: 310. https://doi.org/10.1086/171430. [CrossRef] [Google Scholar]
- Wellbrock A, Jones GH, Dresing N, Coates AJ, Simon Wedlund C, et al. 2022. Observations of a solar energetic particle event from inside and outside the coma of comet 67P. J Geophys Res Space Phys 127(12): e2022JA030398. https://doi.org/10.1029/2022JA030398. [CrossRef] [Google Scholar]
- Whitman K, Egeland R, Richardson IG, Allison C, Quinn P, et al. 2023. Review of solar energetic particle prediction models. Adv Space Res 72(12): 5161–5242. https://doi.org/10.1016/j.asr.2022.08.006. [CrossRef] [Google Scholar]
- Wijsen N, Aran A, Pomoell J, Poedts S. 2019. Modelling three-dimensional transport of solar energetic protons in a corotating interaction region generated with EUHFORIA. A&A 622: A28. https://doi.org/10.1051/0004-6361/201833958. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Wijsen N, Aran A, Scolini C, Lario D, Afanasiev A, Vainio R, Sanahuja B, Pomoell J, Poedts S. 2022. Observation-based modelling of the energetic storm particle event of 14 July 2012. A&A 659: A187. https://doi.org/10.1051/0004-6361/202142698. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Wijsen N, Lario D, Sánchez-Cano B, Jebaraj IC, Dresing N, et al. 2023. The effect of the ambient solar wind medium on a CME-driven shock and the associated gradual solar energetic particle event. Astrophys J 950(2): 172. https://doi.org/10.3847/1538-4357/acd1ed. [CrossRef] [Google Scholar]
- Wold AM, Mays ML, Taktakishvili A, Jian LK, Odstrcil D, MacNeice P. 2018. Verification of real-time WSA-ENLIL+Cone simulations of CME arrival-time at the CCMC from 2010 to 2016. J Space Weather Space Clim 8: A17. https://doi.org/10.1051/swsc/2018005. [CrossRef] [EDP Sciences] [Google Scholar]
- Xie H, Mäkelä P, St. Cyr OC, Gopalswamy N. 2017. Comparison of the coronal mass ejection shock acceleration of three widespread SEP events during solar cycle 24. J Geophys Res Space Phys 122(7): 7021–7041. https://doi.org/10.1002/2017JA024218. [CrossRef] [Google Scholar]
- Yang L, Hou C, Feng X, He J, Xiong M, et al. 2023. Global morphology distortion of the 2021 October coronal mass ejection from an ellipsoid to a concave shape. Astrophys J 942(2): 65. https://doi.org/10.3847/1538-4357/aca52d. [CrossRef] [Google Scholar]
- Young MA, Schwadron NA, Gorby M, Linker J, Caplan RM, et al. 2021. Energetic proton propagation and acceleration simulated for the Bastille day event of 2000 July 14. Astrophys J 909(2): 160. https://doi.org/10.3847/1538-4357/abdf5f. [CrossRef] [Google Scholar]
- Zank GP, Hunana P, Mostafavi P, Le Roux JA, Li G, Webb GM, Khabarova O, Cummings A, Stone E, Decker R. 2015. Diffusive shock acceleration and reconnection acceleration processes. Astrophys J 814(2): 137. https://doi.org/10.1088/0004-637X/814/2/137. [CrossRef] [Google Scholar]
- Zhang M, Jokipii JR, McKibben RB. 2003. Perpendicular transport of solar energetic particles in heliospheric magnetic fields. Astrophys J 595(1): 493–499. https://doi.org/10.1086/377301. [CrossRef] [Google Scholar]
- Zhang M, Zhao L. 2017. Precipitation and release of solar energetic particles from the solar coronal magnetic field. Astrophys J 846(2): 107. https://doi.org/10.3847/1538-4357/aa86a8. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.