Open Access
Issue |
J. Space Weather Space Clim.
Volume 14, 2024
|
|
---|---|---|
Article Number | 19 | |
Number of page(s) | 19 | |
DOI | https://doi.org/10.1051/swsc/2024018 | |
Published online | 01 August 2024 |
- Alves MV, Echer E, Gonzalez WD. 2006. Geoeffectiveness of corotating interaction regions as measured by Dst index. J Geophys Res 111(A7): A07S05. https://doi.org/10.1029/2005JA011379. [CrossRef] [Google Scholar]
- André N, Grande M, Achilleos N, Barthélémy M, Bouchemit M, et al. 2018. Virtual planetary space weather services offered by the europlanet H2020 research infrastructure. Planet Space Sci 150: 50–59. https://doi.org/10.1016/j.pss.2017.04.020. [CrossRef] [Google Scholar]
- Arge CN, Luhmann JG, Odstrcil D, Schrijver CJ, Li Y. 2004. Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME. J Atm Solar-Terr Phys 66(15–16): 1295–1309. https://doi.org/10.1016/j.jastp.2004.03.018. [CrossRef] [Google Scholar]
- Arge CN, Pizzo VJ. 2000. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J Geophys Res 105(A5): 10465–10480. https://doi.org/10.1029/1999JA000262. [CrossRef] [Google Scholar]
- Bellman R, Kalaba R. 1959. On adaptive control processes. IRE Trans Autom Control 4(2): 1–9. https://doi.org/10.1109/TAC.1959.1104847. [CrossRef] [Google Scholar]
- Berndt D, Clifford J. 1994. Using dynamic time warping to find patterns in time series. In: “Workshop on Knowledge Discovery in Databases”, AAAI Technical Report WS-94-03. [Google Scholar]
- Blake JB, Baker DN, Turner N, Ogilvie KW, Lepping RP. 1997. Correlation of changes in the outer-zone relativistic-electron population with upstream solar wind and magnetic field measurements. Geophys Res Lett 24(8): 927–929. https://doi.org/10.1029/97GL00859. [CrossRef] [Google Scholar]
- Borovsky JE, Denton MH. 2006. Differences between CME-driven storms and CIR-driven storms. J Geophys Res 111(A7): A07S08. https://doi.org/10.1029/2005JA011447. [Google Scholar]
- Bunting KA, Morgan H. 2022. An inner boundary condition for solar wind models based on coronal density. J Space Weather Space Clim 12: 30. https://doi.org/10.1051/swsc/2022026. [CrossRef] [EDP Sciences] [Google Scholar]
- Chi Y, Shen C, Luo B, Wang Y, Xu M. 2018. Geoeffectiveness of stream interaction regions from 1995 to 2016. Space Weather 16(12): 1960–1971. https://doi.org/10.1029/2018SW001894. [NASA ADS] [CrossRef] [Google Scholar]
- Chu S, Keogh E, Hart D, Pazzani M. 2002. Iterative deepening dynamic time warping for time series. In: Proceedings of the 2002 SIAM International Conference on Data Mining, Eds. Robert Grossman, Jiawei Han, Vipin Kumar, Heikki Mannila, and Rajeev Motwani. https://doi.org/10.1137/1.9781611972726.12. [Google Scholar]
- Cranmer SR, Gibson SE, Riley P. 2017. Origins of the ambient solar wind: implications for space weather. Space Sci Rev 212(3–4): 1345–1384. https://doi.org/10.1007/s11214-017-0416-y. [CrossRef] [Google Scholar]
- Dósa M, Opitz A, Dálya Z, Szegő K. 2018. Magnetic Lasso: a new kinematic solar wind propagation method. Sol Phys 293(9): 127. https://doi.org/10.1007/s11207-018-1340-3. [CrossRef] [Google Scholar]
- Efrat A, Fan Q, Venkatasubramanian S. 2007. Curve matching, time warping, and light fields: new algorithms for computing similarity between curves. J Math Imaging Vis 27(3): 203–216. https://doi.org/10.1007/s10851-006-0647-0. [CrossRef] [Google Scholar]
- Furtună TF. 2008. Dynamic programming algorithms in speech recognition. Rev Inform Econ 2(46): 94. [Google Scholar]
- Górecki T, ŁuczakM. 2013. Using derivatives in time series classification. Data Mining Knowledge Discov 26(2): 310–331. https://doi.org/10.1007/s10618-012-0251-4. [CrossRef] [Google Scholar]
- Grandin M, Aikio AT, Kozlovsky A. 2019. Properties and geoeffectiveness of solar wind high-speed streams and stream interaction regions during solar cycles 23 and 24. J Geophys Res 124(6): 3871–3892. https://doi.org/10.1029/2018JA026396. [CrossRef] [Google Scholar]
- Harvey JW, Hill F, Hubbard RP, Kennedy JR, Leibacher JW, et al. 1996. The global oscillation network group (GONG) project. Science 272(5266): 1284–1286. https://doi.org/10.1126/science.272.5266.1284. [CrossRef] [Google Scholar]
- Hickmann KS, Godinez HC, Henney CJ, Arge CN. 2015. Data assimilation in the ADAPT photospheric flux transport model. Sol Phys 290(4): 1105–1118. https://doi.org/10.1007/s11207-015-0666-3. [CrossRef] [Google Scholar]
- Hinterreiter J, Magdalenic J, Temmer M, Verbeke C, Jebaraj IC, et al. 2019. Assessing the performance of EUHFORIA modeling the background solar wind. Sol Phys 294(12): 170. https://doi.org/10.1007/s11207-019-1558-8. [CrossRef] [Google Scholar]
- Horne RB, Glauert SA, Meredith NP, Koskinen H, Vainio R, et al. 2013. Forecasting the Earth’s radiation belts and modelling solar energetic particle events: recent results from SPACECAST. J Space Weather Space Clim 3: A20. https://doi.org/10.1051/swsc/2013042. [CrossRef] [EDP Sciences] [Google Scholar]
- Horne RB, Phillips MW, Glauert SA, Meredith NP, Hands ADP, Ryden KA, Li W. 2018. Realistic worst case for a severe space weather event driven by a fast solar wind stream. Space Weather 16(9): 1202–1215. https://doi.org/10.1029/2018SW001948. [CrossRef] [Google Scholar]
- Hudson MK, Elkington SR, Li Z, Patel M, Pham K, Sorathia K, Boyd A, Jaynes A, Leali A. 2021. MHD-test particles simulations of moderate CME and CIR-driven geomagnetic storms at solar minimum. Space Weather 19(12): e02882. https://doi.org/10.1029/2021SW002882. [CrossRef] [Google Scholar]
- Jian LK, MacNeice PJ, Taktakishvili A, Odstrcil D, Jackson B, Yu HS, Riley P, Sokolov IV, Evans RM. 2015. Validation for solar wind prediction at Earth: comparison of coronal and heliospheric models installed at the CCMC. Space Weather 13(5): 316–338. https://doi.org/10.1002/2015SW001174. [CrossRef] [Google Scholar]
- Jian LK, Russell CT, Luhmann JG. 2011a. Comparing solar minimum 23/24 with historical solar wind records at 1 AU. Sol Phys 274(1–2): 321–344. https://doi.org/10.1007/s11207-011-9737-2. [CrossRef] [Google Scholar]
- Jian LK, Russell CT, Luhmann JG, MacNeice PJ, Odstrcil D, Riley P, Linker JA, Skoug RM, Steinberg JT. 2011b. Comparison of observations at ACE and Ulysses with Enlil model results: stream interaction regions during Carrington rotations 2016–2018. Sol Phys 273(1): 179–203. https://doi.org/10.1007/s11207-011-9858-7. [CrossRef] [Google Scholar]
- Katsavrias C, Sandberg I, Li W, Podladchikova O, Daglis I, Papadimitriou C, Tsironis C, Aminalragia-Giamini S. 2019. Highly relativistic electron flux enhancement during the weak geomagnetic storm of April–May 2017. J Geophys Res 124(6): 4402–4413. https://doi.org/10.1029/2019JA026743. [CrossRef] [Google Scholar]
- Keogh E, Ratanamahatana CA. 2005. Exact indexing of dynamic time warping. Knowl Inf Syst 7(3): 358–386. https://doi.org/10.1007/s10115-004-0154-9. [CrossRef] [Google Scholar]
- Keogh EJ, Pazzani MJ. 2001. Derivative dynamic time warping. In: Proceedings of the 2001 SIAM International Conference on Data Mining, Eds. Vipin Kumar and Robert Grossman, https://doi.org/10.1137/1.9781611972719.1. [Google Scholar]
- Kilpua EKJ, Balogh A, von Steiger R, Liu YD. 2017. Geoeffective properties of solar transients and stream interaction regions. Space Sci Rev 212(3): 1271–1314. https://doi.org/10.1007/s11214-017-0411-3. [Google Scholar]
- King JH, Papitashvili NE. 2005. Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data. J Geophys Res 110(A2): A02104. https://doi.org/10.1029/2004JA010649. [Google Scholar]
- Lam MM, Horne RB, Meredith NP, Glauert SA. 2009. Radiation belt electron flux variability during three CIR-driven geomagnetic storms. J Atm Solar-Terr Phys 71(10–11): 1145–1156. https://doi.org/10.1016/j.jastp.2008.06.007. [CrossRef] [Google Scholar]
- Lanzerotti LJ. 2007. Space weather effects on communications. In: Space weather physics and effects. Springer Praxis Books, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34578-7_9. [Google Scholar]
- Laperre B, Amaya J, Lapenta G. 2020. Dynamic time warping as a new evaluation for Dst forecast with machine learning. Front Astron Space Sci 7: 39. https://doi.org/10.3389/fspas.2020.00039. [CrossRef] [Google Scholar]
- Lee CO, Luhmann JG, Odstrcil D, MacNeice PJ, de Pater I, Riley P, Arge CN. 2009. The solar wind at 1 AU during the declining phase of solar cycle 23: comparison of 3D numerical model results with observations. Sol Phys 254(1): 155–183. https://doi.org/10.1007/s11207-008-9280-y. [CrossRef] [Google Scholar]
- Li X, Baker DN, Temerin M, Larson D, Lin RP, Reeves GD, Looper M, Kanekal SG, Mewaldt RA. 1997. Are energetic electrons in the solar wind the source of the outer radiation belt? Geophys Res Lett 24(8): 923–926. https://doi.org/10.1029/97GL00543. [CrossRef] [Google Scholar]
- Linker JA, Mikić Z, Biesecker DA, Forsyth RJ, Gibson SE, Lazarus AJ, Lecinski A, Riley P, Szabo A, Thompson BJ. 1999. Magnetohydrodynamic modeling of the solar corona during Whole Sun Month. J Geophys Res 104(A5): 9809–9830. https://doi.org/10.1029/1998JA900159. [CrossRef] [Google Scholar]
- MacNeice P. 2009a. Validation of community models: 2. Development of a baseline using the Wang-Sheeley-Arge model. Space Weather 7(12): S12002. https://doi.org/10.1029/2009SW000489. [Google Scholar]
- MacNeice P. 2009b. Validation of community models: Identifying events in space weather model timelines. Space Weather 7(6): S06004. https://doi.org/10.1029/2009SW000463. [Google Scholar]
- MacNeice P, Jian LK, Antiochos SK, Arge CN, Bussy-Virat CD, et al. 2018. Assessing the quality of models of the ambient solar wind. Space Weather 16(11): 1644–1667. https://doi.org/10.1029/2018SW002040. [NASA ADS] [CrossRef] [Google Scholar]
- Merkin VG, Lionello R, Lyon JG, Linker J, Török T, Downs C. 2016. Coupling of coronal and heliospheric magnetohydrodynamic models: solution comparisons and verification. Astrophys J 831(1): 23. https://doi.org/10.3847/0004-637X/831/1/23. [CrossRef] [Google Scholar]
- Milošić D, Temmer M, Heinemann SG, Podladchikova T, Veronig A, Vršnak B. 2023. Improving the empirical solar wind forecast (ESWF). Sol Phys 298(3): 45. https://doi.org/10.1007/s11207-022-02102-5. [CrossRef] [Google Scholar]
- Miyoshi Y, Kataoka R, Kasahara Y, Kumamoto A, Nagai T, Thomsen MF. 2013. High-speed solar wind with southward interplanetary magnetic field causes relativistic electron flux enhancement of the outer radiation belt via enhanced condition of whistler waves. Geophys Res Lett 40(17): 4520–4525. https://doi.org/10.1002/grl.50916. [CrossRef] [Google Scholar]
- Müller M. 2007. Dynamic time warping. In: Information retrieval for music and motion. Springer, Berlin Heidelberg. pp. 69–84. ISBN 978-3-540-74048-3. https://doi.org/10.1007/978-3-540-74048-3_4. [CrossRef] [Google Scholar]
- Myers C, Rabiner L, Rosenberg A. 1980. Performance tradeoffs in dynamic time warping algorithms for isolated word recognition. IEEE Trans Acoust Speech 28(6): 623–635. https://doi.org/10.1109/TASSP.1980.1163491. [CrossRef] [Google Scholar]
- Nilsson H, Moeslinger A, Williamson HN, Bergman S, Gunell H, Stenberg Wieser G, Futaana Y, Karlsson T, Behar E, Holmström M. 2022. Upstream solar wind speed at comet 67P. Reconstruction method, model comparison, and results. Astron Astrophys 659: A18. https://doi.org/10.1051/0004-6361/202142867. [CrossRef] [EDP Sciences] [Google Scholar]
- Odstrcil D, Pizzo VJ. 1999. Distortion of the interplanetary magnetic field by three-dimensional propagation of coronal mass ejections in a structured solar wind. J Geophys Res 104(A12): 28225–28240. https://doi.org/10.1029/1999JA900319. [CrossRef] [Google Scholar]
- Odstrcil D, Pizzo VJ, Linker JA, Riley P, Lionello R, Mikic Z. 2004. Initial coupling of coronal and heliospheric numerical magnetohydrodynamic codes. J Atm Solar-Terr Phys 66(15–16): 1311–1320. https://doi.org/10.1016/j.jastp.2004.04.007. [CrossRef] [Google Scholar]
- Odstrčil D, Dryer M, Smith Z. 1996. Propagation of an interplanetary shock along the heliospheric plasma sheet. J Geophys Res 101(A9): 19973–19986. https://doi.org/10.1029/96JA00479. [CrossRef] [Google Scholar]
- Owens MJ, Arge CN, Spence HE, Pembroke A. 2005. An event-based approach to validating solar wind speed predictions: High-speed enhancements in the Wang-Sheeley-Arge model. J Geophys Res 110(A12): A12105. https://doi.org/10.1029/2005JA011343. [Google Scholar]
- Owens MJ, Challen R, Methven J, Henley E, Jackson DR. 2013. A 27 day persistence model of near-Earth solar wind conditions: A long lead-time forecast and a benchmark for dynamical models. Space Weather 11(5): 225–236. https://doi.org/10.1002/swe.20040. [CrossRef] [Google Scholar]
- Owens MJ, Nichols JD. 2021. Using in situ solar-wind observations to generate inner-boundary conditions to outer-heliosphere simulations – I. Dynamic time warping applied to synthetic observations. Mon Notices Royal Astron Soc 508(2): 2575–2582. https://doi.org/10.1093/mnras/stab2512. [CrossRef] [Google Scholar]
- Owens MJ, Riley P. 2017. Probabilistic solar wind forecasting using large ensembles of near-Sun conditions with a simple one-dimensional “upwind” scheme. Space Weather 15(11): 1461–1474. https://doi.org/10.1002/2017SW001679. [NASA ADS] [CrossRef] [Google Scholar]
- Palmerio E, Nieves-Chinchilla T, Kilpua EKJ, Barnes D, Zhukov AN, et al. 2021. Magnetic structure and propagation of two interacting CMEs from the Sun to Saturn. J Geophys Res 126(11): e2021JA029770. https://doi.org/10.1029/2021JA029770. [CrossRef] [Google Scholar]
- Paulikas GA, Blake JB. 1979. Effects of the solar wind on magnetospheric dynamics: Energetic electrons at the synchronous orbit. In: Quantitative modeling of magnetospheric processes, Ed. W.P. Olson. https://doi.org/10.1029/GM021p0180. [Google Scholar]
- Perri B, Kuźma B, Brchnelova M, Baratashvili T, Zhang F, Leitner P, Lani A, Poedts S. 2023. COCONUT, a novel fast-converging MHD model for solar corona simulations. II. Assessing the impact of the input magnetic map on space-weather forecasting at minimum of activity. Astrophys J 943(2): 124. https://doi.org/10.3847/1538-4357/ac9799. [CrossRef] [Google Scholar]
- Pinto RF, Rouillard AP. 2017. A multiple flux-tube solar wind model. Astrophys J 838(2): 89. https://doi.org/10.3847/1538-4357/aa6398. [CrossRef] [Google Scholar]
- Pinto VA, Kim H-J, Lyons LR, Bortnik J. 2018. Interplanetary parameters leading to relativistic electron enhancement and persistent depletion events at geosynchronous orbit and potential for prediction. J Geophys Res 123(2): 1134–1145. https://doi.org/10.1002/2017JA024902. [CrossRef] [Google Scholar]
- Pizzo V. 1978. A three-deminsional model of corotating streams in the solar wind 1. Theoretical foundations. J Geophys Res 83(A12): 5563–5572. https://doi.org/10.1029/JA083iA12p05563. [CrossRef] [Google Scholar]
- Pizzo V, Millward G, Parsons A, Biesecker D, Hill S, Odstrcil D. 2011. Wang-Sheeley-Arge-Enlil Cone model transitions to operations. Space Weather 9(3): 03004. https://doi.org/10.1029/2011SW000663. [Google Scholar]
- Pomoell J, Poedts S. 2018. EUHFORIA: European heliospheric forecasting information asset. J Space Weather Space Clim 8: A35. https://doi.org/10.1051/swsc/2018020. [Google Scholar]
- Ratanamahatana CA, Keogh E. 2004. Making time-series classification more accurate using learned constraints. In: Proceedings of the 2004 SIAM international conference on data mining (SDM) Eds. Berry Michael W, Dayal U, Kamath C, Skillicorn D, pp. 11–22. https://doi.org/10.1137/1.9781611972740.2. [CrossRef] [Google Scholar]
- Reiss MA, MacNeice PJ, Mays LM, Arge CN, Möstl C, Nikolic L, Amerstorfer T. 2019. Forecasting the ambient solar wind with numerical models. I. On the implementation of an operational framework. Astrophys J 240(2): 35. https://doi.org/10.3847/1538-4365/aaf8b3. [CrossRef] [Google Scholar]
- Reiss MA, MacNeice PJ, Muglach K, Arge CN, Möstl C, et al. 2020. Forecasting the ambient solar wind with numerical models. II. An adaptive prediction system for specifying solar wind speed near the Sun. Astrophys J 891(2): 165. https://doi.org/10.3847/1538-4357/ab78a0. [CrossRef] [Google Scholar]
- Reiss MA, Muglach K, Mullinix R, Kuznetsova MM, Wiegand C, et al. 2023. Unifying the validation of ambient solar wind models. Adv Space Res 72(12): 5275–5286. https://doi.org/10.1016/j.asr.2022.05.026. [CrossRef] [Google Scholar]
- Reiss MA, Temmer M, Veronig AM, Nikolic L, Vennerstrom S, Schöngassner F, Hofmeister SJ. 2016. Verification of high-speed solar wind stream forecasts using operational solar wind models. Space Weather 14(7): 495–510. https://doi.org/10.1002/2016SW001390. [NASA ADS] [CrossRef] [Google Scholar]
- Réville V, Poirier N, Kouloumvakos A, Rouillard AP, Ferreira Pinto R, et al. 2023. HelioCast: heliospheric forecasting based on white-light observations of the solar corona. J Space Weather Space Clim 13: 11. https://doi.org/10.1051/swsc/2023008. [CrossRef] [EDP Sciences] [Google Scholar]
- Richardson IG. 2018. Solar wind stream interaction regions throughout the heliosphere. Living Rev Sol Phys 15(1): 1. https://doi.org/10.1007/s41116-017-0011-z. [CrossRef] [Google Scholar]
- Richardson IG, Cliver EW, Cane HV. 2001. Sources of geomagnetic storms for solar minimum and maximum conditions during 1972–2000. Geophys Res Lett 28(13): 2569–2572. https://doi.org/10.1029/2001GL013052. [CrossRef] [Google Scholar]
- Riley P, Linker JA, Lionello R, Mikic Z. 2012. Corotating interaction regions during the recent solar minimum: The power and limitations of global MHD modeling. J Atm Solar-Terr Phys 83: 1–10. https://doi.org/10.1016/j.jastp.2011.12.013. [CrossRef] [Google Scholar]
- Riley P, Lionello R. 2011. Mapping solar wind streams from the Sun to 1 AU: a comparison of techniques. Sol Phys 270(2): 575–592. https://doi.org/10.1007/s11207-011-9766-x. [CrossRef] [Google Scholar]
- Robbins S, Henney CJ, Harvey JW. 2006. Solar wind forecasting with coronal holes. Sol Phys 233(2): 265–276. https://doi.org/10.1007/s11207-006-0064-y. [CrossRef] [Google Scholar]
- Rouillard AP, Pinto RF, Vourlidas A, De Groof A, Thompson WT, et al. 2020. Models and data analysis tools for the Solar Orbiter mission. Astron Astrophys 642: A2. https://doi.org/10.1051/0004-6361/201935305. [CrossRef] [EDP Sciences] [Google Scholar]
- Sakoe H, Chiba S. 1978. Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans Acoust Speech 26(1): 43–49. https://doi.org/10.1109/TASSP.1978.1163055. [CrossRef] [Google Scholar]
- Salvador S, Chan P. 2007. Toward accurate dynamic time warping in linear time and space. Intell Data Anal 11(5): 561–580. https://doi.org/10.3233/IDA-2007-11508. [CrossRef] [Google Scholar]
- Samara E, Laperre B, Kieokaew R, Temmer M, Verbeke C, Rodriguez L, Magdalenić J, Poedts S. 2022. Dynamic time warping as a means of assessing solar wind time series. Astrophys J 927(2): 187. https://doi.org/10.3847/1538-4357/ac4af6. [CrossRef] [Google Scholar]
- Samara E, Pinto RF, Magdalenić J, Wijsen N, Jerčić V, Scolini C, Jebaraj IC, Rodriguez L, Poedts S. 2021. Implementing the MULTI-VP coronal model in EUHFORIA: Test case results and comparisons with the WSA coronal model. Astron Astrophys 648: A35. https://doi.org/10.1051/0004-6361/202039325. [CrossRef] [EDP Sciences] [Google Scholar]
- Schou J, Scherrer PH, Bush RI, Wachter R, Couvidat S, et al. 2012. Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO). Sol Phys 275(1–2): 229–259. https://doi.org/10.1007/s11207-011-9842-2. [CrossRef] [Google Scholar]
- Schwenn R. 1990. Large-scale structure of the interplanetary medium. In: Schwenn, R, Marsch E. (Eds.) Physics of the inner heliosphere I. Physics and chemistry in space, space and solar phycics, vol 20. Springer, Berlin, Heidelberg. ISBN 978-3-642-75361-9. https://doi.org/10.1007/978-3-642-75361-9_3. [Google Scholar]
- Taktakishvili A, Kuznetsova M, MacNeice P, Hesse M, Rastätter L, Pulkkinen A, Chulaki A, Odstrcil D. 2009. Validation of the coronal mass ejection predictions at the Earth orbit estimated by ENLIL heliosphere cone model. Space Weather 7(3): S03004. https://doi.org/10.1029/2008SW000448. [CrossRef] [Google Scholar]
- Taktakishvili A, Pulkkinen A, MacNeice P, Kuznetsova M, Hesse M, Odstrcil D. 2011. Modeling of coronal mass ejections that caused particularly large geomagnetic storms using ENLIL heliosphere cone model. Space Weather 9(6): 06002. https://doi.org/10.1029/2010SW000642. [CrossRef] [Google Scholar]
- Tao C, Kataoka R, Fukunishi H, Takahashi Y, Yokoyama T. 2005. Magnetic field variations in the Jovian magnetotail induced by solar wind dynamic pressure enhancements. J Geophys Res 110(A11): A11208. https://doi.org/10.1029/2004JA010959. [Google Scholar]
- Tóth G, Sokolov IV, Gombosi TI, Chesney DR, Clauer CR, et al. 2005. Space Weather Modeling Framework: A new tool for the space science community. J Geophys Res 110(A12): A12226. https://doi.org/10.1029/2005JA011126. [CrossRef] [Google Scholar]
- Tsurutani BT, Gonzalez WD, Gonzalez ALC, Guarnieri FL, Gopalswamy N, et al. 2006. Corotating solar wind streams and recurrent geomagnetic activity: a review. J Geophys Res 111(A7): A07S01. https://doi.org/10.1029/2005JA011273. [Google Scholar]
- Vršnak B, Dumbović M, Čalogović J, Verbanac G, Poljančić Beljan I. 2017. Geomagnetic effects of corotating interaction regions. Sol Phys 292(9): 140. https://doi.org/10.1007/s11207-017-1165-5. [CrossRef] [Google Scholar]
- Vršnak B, Temmer M, Veronig AM. 2007. Coronal holes and solar wind high-speed streams: I. Forecasting the solar wind parameters. Sol Phys 240(2): 315–330. https://doi.org/10.1007/s11207-007-0285-8. [CrossRef] [Google Scholar]
- Wang YM, Sheeley NR. 1992. On potential field models of the solar corona. Astrophys J 392: 310. https://doi.org/10.1086/171430. [CrossRef] [Google Scholar]
- Woodcock F. 1976. The evaluation of yes/no forecasts for scientific and administrative purposes. Mon Weather Rev 104(10): 1209–1214. [CrossRef] [Google Scholar]
- Yadav M, Alam MA. 2018. Dynamic time warping (dtw) algorithm in speech: a review. Int J Res Electr Comp Eng 6(1): 524–528. [Google Scholar]
- Yermolaev YI, Lodkina IG, Nikolaeva NS, Yermolaev MY, Riazantseva MO, Rakhmanova LS. 2018. Statistic study of the geoeffectiveness of compression regions CIRs and Sheaths. J Atm Solar-Terr Phys 180: 52–59. https://doi.org/10.1016/j.jastp.2018.01.027. [CrossRef] [Google Scholar]
- Zhang Y, Sun W, Feng XS, Deehr CS, Fry CD, Dryer M. 2008. Statistical analysis of corotating interaction regions and their geoeffectiveness during solar cycle 23. J Geophys Res 113(A8): A08106. https://doi.org/10.1029/2008JA013095. [Google Scholar]
- Zhu Q, Batista G, Rakthanmanon T, Keogh E. 2012. A novel approximation to dynamic time warping allows anytime clustering of massive time series datasets. In: Proceedings of the 2012 SIAM international conference on data mining (SDM). Eds. Ghosh J, Liu H, Davidson I, Domeniconi C, Kamath C, pp. 999–1010. https://doi.org/10.1137/1.9781611972825.86. [CrossRef] [Google Scholar]
- Zieger B, Hansen KC. 2008. Statistical validation of a solar wind propagation model from 1 to 10 AU. J Geophys Res 113: A8. https://doi.org/10.1029/2008JA013046. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.