Open Access
Issue |
J. Space Weather Space Clim.
Volume 14, 2024
|
|
---|---|---|
Article Number | 20 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/swsc/2024020 | |
Published online | 01 August 2024 |
- Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, et al. 2003. Geant4-a simulation toolkit. Nucl Instr Meth Phys Res A 506: 250–303. https://doi.org/10.1016/S0168-9002(03)01368-8. [CrossRef] [Google Scholar]
- Bazilevskaya GA, Usoskin IG, Flückiger EO, Harrison RG, Desorgher L, et al. 2008. Cosmic ray induced ion production in the atmosphere. Space Sci Rev 137: 149–173. https://doi.org/10.1007/s11214-008-9339-y. [CrossRef] [Google Scholar]
- Berger M, Coursey J, Zucker M, Chang J. 2017. NIST stopping-power and range tables for electrons, protons, and helium ions – SRD 124. Tech. Rep., NIST. https://doi.org/10.18434/T4NC7P. [Google Scholar]
- Calisto M, Usoskin I, Rozanov E, Peter T. 2011. Influence of galactic cosmic rays on atmospheric composition and dynamics. Atmos Chem Phys 11: 4547–4556. https://doi.org/10.5194/acp-11-4547-2011. [CrossRef] [Google Scholar]
- Cooke D, Humble J, Shea M, Smart D, Lund N, Rasmussen I, Byrnak B, Goret P, Petrou N. 1991. On cosmic-ray cut-off terminology. Nuovo Cimento C 14: 213–234. https://doi.org/10.1007/BF02509357. [CrossRef] [Google Scholar]
- Crutzen PJ, Isaksen ISA, Reid GC. 1975. Solar proton events: stratospheric sources of nitric oxide. Science 189(4201): 457–459. https://doi.org/10.1126/science.189.4201.457. [CrossRef] [Google Scholar]
- Desai M, Giacalone J. 2016. Large gradual solar energetic particle events. Liv Rev Solar Phys 13: 3. https://doi.org/10.1007/s41116-016-0002-5. [CrossRef] [Google Scholar]
- Desorgher L, Flückiger EO, Gurtner M, Moser MR, Bütikofer R. 2005. Atmocosmics: a Geant 4 Code for computing the interaction of cosmic rays with the Earth’s atmosphere. Int J Modern Phys A 20: 6802–6804. https://doi.org/10.1142/S0217751X05030132. [CrossRef] [Google Scholar]
- Desorgher L, Kudela K, Flückiger E, Buetikofer R, Storini M, Kalegaev V. 2009. Comparison of Earth’s magnetospheric magnetic field models in the context of cosmic ray physics. Acta Geophys 57(1): 75. https://doi.org/10.2478/s11600-008-0065-3. [CrossRef] [Google Scholar]
- Dorman L. 2004. Cosmic rays in the Earth’s atmosphere and underground. Kluwer Academic Publishers, Dordrecht. [CrossRef] [Google Scholar]
- Eisenbud M, Gesell T. 1997. Environmental radioactivity from natural, industrial and military sources. Academic Press, Cambridge, MA. ISBN 9780122351549. [Google Scholar]
- Engel R, Heck D, Pierog T. 2011. Extensive air showers and hadronic interactions at high energies. Annu Rev Nucl Part Sci 61: 467–489. https://doi.org/10.1146/annurev.nucl.012809.104544. [CrossRef] [Google Scholar]
- Fassò A, Ferrari A, Ranft J, Sala P. 2001. FLUKA: status and prospective of hadronic applications. In A. K. et al., ed., Proc. Monte Carlo 2000 Conf., 955–960. Springer, Berlin. [Google Scholar]
- Funke B, Dudok de Wit T, Ermolli I, Haberreiter M, Kinnison D, Marsh D, Nesse H, Seppälä A, Sinnhuber M, Usoskin I. 2024. Towards the definition of a solar forcing dataset for CMIP7. Geosci Model Dev 17(3): 1217–1227. https://doi.org/10.5194/gmd-17-1217-2024. [CrossRef] [Google Scholar]
- Gaisser T, Engel R, Resconi E. 2016. Cosmic rays and particle physics. Cambridge University Press, Cambridge, UK. ISBN 9781139192194. [CrossRef] [Google Scholar]
- Golubenko K, Rozanov E, Mironova I, Karagodin A, Usoskin I. 2020. Natural sources of ionization and their impact on atmospheric electricity. Geophys Res Lett 47(12): e88619. https://doi.org/10.1029/2020GL088619. [CrossRef] [Google Scholar]
- Grieder P. 2011. Extensive air showers: high energy phenomena and astrophysical aspects. Space Science Library, Springer, NY. ISBN 978-3540769408. [Google Scholar]
- Heck D, Knapp J, Capdevielle J, Schatz G, Thouw T. 1998. CORSIKA: a Monte Carlo Code to simulate extensive air showers. In: FZKA 6019. Forschungszentrum, Karlsruhe. [Google Scholar]
- Jackman CH, Marsh DR, Kinnison DE, Mertens CJ, Fleming E. 2016. Atmospheric changes caused by galactic cosmic rays over the period 1960–2010. Atmos Chem Phys 16(9): 5853–5866. https://doi.org/10.5194/acp-16-5853-2016. [CrossRef] [Google Scholar]
- Jungclaus JH, Bard E, Baroni M, Braconnot P, Cao J, et al. 2017. The PMIP4 contribution to CMIP6 – Part 3: The last millennium, scientific objective, and experimental design for the PMIP4 past1000 simulations. Geosci Model Dev 10(11): 4005–4033. https://doi.org/10.5194/gmd-10-4005-2017. [CrossRef] [Google Scholar]
- Koldobskiy SA, Bindi V, Corti C, Kovaltsov G, Usoskin I. 2019. Validation of the neutron monitor yield function using data from AMS-02 experiment 2011–2017. J Geophys Res (Space Phys) 124: 2367–2379. https://doi.org/10.1029/2018JA026340. [CrossRef] [Google Scholar]
- Matthes K, Funke B, Andersson ME, Barnard L, Beer J, et al. 2017. Solar forcing for CMIP6 (v3.2). Geosci Model Dev 10: 2247–2302. https://doi.org/10.5194/gmd-10-2247-2017. [CrossRef] [Google Scholar]
- McGranaghan R, Knipp D, Solomon S, Fang X. 2015. A fast, parameterized model of upper atmospheric ionization rates, chemistry, and conductivity. J Geophys Res (Space Phys) 120(6): 4936–4949. https://doi.org/10.1002/2015JA021146. [CrossRef] [Google Scholar]
- Mironova IA, Aplin KL, Arnold F, Bazilevskaya GA, Harrison RG, Krivolutsky AA, Nicoll KA, Rozanov EV, Turunen E, Usoskin IG. 2015. Energetic particle influence on the Earth’s atmosphere. Space Sci Rev 194: 1–96. https://doi.org/10.1007/s11214-015-0185-4. [CrossRef] [Google Scholar]
- Mishev AL, Velinov P. 2010. The effect of model assumptions on computations of cosmic ray induced ionization in the atmosphere. J Atmos Solar-Terr Phys 72(5–6): 476–481. https://doi.org/10.1016/j.jastp.2010.01.004. [CrossRef] [Google Scholar]
- Mishev AL, Velinov PIY. 2014. Influence of hadron and atmospheric models on computation of cosmic ray ionization in the atmosphere-Extension to heavy nuclei. J Atmos Solar-Terr Phys 120: 111–120. https://doi.org/10.1016/j.jastp.2014.09.007. [CrossRef] [Google Scholar]
- Nevalainen J, Usoskin IG, Mishev A. 2013. Eccentric dipole approximation of the geomagnetic field: application to cosmic ray computations. Adv Space Res 52: 22–29. https://doi.org/10.1016/j.asr.2013.02.020. [CrossRef] [Google Scholar]
- Picone JM, Hedin AE, Drob DP, Aikin AC. 2002. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J Geophys Res 107: 1468. https://doi.org/10.1029/2002JA009430. [Google Scholar]
- Pierog T. 2017. Open issues in hadronic interactions for air showers. EPJ Web Conf 145: 18002. https://doi.org/10.1051/epjconf/201614518002. [CrossRef] [EDP Sciences] [Google Scholar]
- Porter HS, Jackman CH, Green AES. 1976. Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air. J Chem Phys 65: 154–167. https://doi.org/10.1063/1.432812. [CrossRef] [Google Scholar]
- Randall CE, Harvey VL, Singleton CS, Bailey SM, Bernath PF, Codrescu M, Nakajima H, Russell JM. 2007. Energetic particle precipitation effects on the Southern Hemisphere stratosphere in 1992–2005. J Geophys Res (Atmos) 112(D8): D08308. https://doi.org/10.1029/2006JD007696. [CrossRef] [Google Scholar]
- Regener E, Pfotzer G. 1935. Vertical intensity of cosmic rays by threefold coincidences in the stratosphere. Nature 136: 718–719. https://doi.org/10.1038/136718a0. [CrossRef] [Google Scholar]
- Rozanov E, Calisto M, Egorova T, Peter T, Schmutz W. 2012. Influence of the precipitating energetic particles on atmospheric chemistry and climate. Surv Geophys 33: 483. https://doi.org/10.1007/s10712-012-9192-0. [CrossRef] [Google Scholar]
- Semeniuk K, Fomichev VI, McConnell JC, Fu C, Melo SML, Usoskin IG. 2011. Middle atmosphere response to the solar cycle in irradiance and ionizing particle precipitation. Atmos Chem Phys 11: 5045–5077. https://doi.org/10.5194/acp-11-5045-2011. [CrossRef] [Google Scholar]
- Sinnhuber M, Nieder H, Wieters N. 2012. Energetic particle precipitation and the chemistry of the mesosphere/lower thermosphere. Surv Geophys 33(6): 1281–1334. https://doi.org/10.1007/s10712-012-9201-3. [CrossRef] [Google Scholar]
- Thébault E, Finlay CC, Beggan CD, Alken P, Aubert J, et al. 2015. International geomagnetic reference field: the 12th generation. Earth Planets Space 67: 79. https://doi.org/10.1186/s40623-015-0228-9. [CrossRef] [Google Scholar]
- Turunen E, Verronen P, Seppälä A, Rodger C, Clilverd M, Tamminen J, Enell C, Ulich T. 2009. Impact of different energies of precipitating particles on NOx generation in the middle and upper atmosphere during geomagnetic storms. J Atmos Solar-Terr Phys 71(10–11): 1176–1189. https://doi.org/10.1016/j.jastp.2008.07.005. [CrossRef] [Google Scholar]
- Usoskin IG, Desorgher L, Velinov P, Storini M, Flückiger EO, Bütikofer R, Kovaltsov GA. 2009. Ionization of the earth’s atmosphere by solar and galactic cosmic rays. Acta Geophys 57: 88–101. https://doi.org/10.2478/s11600-008-0019-9. [CrossRef] [Google Scholar]
- Usoskin IG, Gil A, Kovaltsov GA, Mishev AL, Mikhailov VV. 2017. Heliospheric modulation of cosmic rays during the neutron monitor era: calibration using PAMELA data for 2006–2010. J Geophys Res (Space Phys) 122: 3875–3887. https://doi.org/10.1002/2016JA023819. [CrossRef] [Google Scholar]
- Usoskin IG, Gladysheva OG, Kovaltsov GA. 2004. Cosmic ray-induced ionization in the atmosphere: spatial and temporal changes. J Atmos Solar-Terr Phys 66: 1791–1796. https://doi.org/10.1016/j.jastp.2004.07.037. [CrossRef] [Google Scholar]
- Usoskin IG, Kovaltsov GA. 2006. Cosmic ray induced ionization in the atmosphere: full modeling and practical applications. J Geophys Res 111: D21206. https://doi.org/10.1029/2006JD007150. [CrossRef] [Google Scholar]
- Usoskin IG, Kovaltsov GA, Mironova IA. 2010. Cosmic ray induced ionization model CRAC:CRII: an extension to the upper atmosphere. J Geophys Res 115(D14): D10302. https://doi.org/10.1029/2009JD013142. [CrossRef] [Google Scholar]
- Vainio R, Desorgher L, Heynderickx D, Storini M, Flückiger E, et al. 2009. Dynamics of the Earth’s particle radiation environment. Space Sci Rev 147: 187–231. https://doi.org/10.1007/s11214-009-9496-7. [CrossRef] [Google Scholar]
- Velinov P, Asenovski S, Kudela K, Lastovicka J, Mateev L, Mishev A, Tonev P. 2013. Impact of cosmic rays and solar energetic particles on the Earth’s ionosphere and atmosphere. J Space Weather Space Clim 3: A14. https://doi.org/10.1051/swsc/2013036. [CrossRef] [EDP Sciences] [Google Scholar]
- Vitt FM, Jackman CH. 1996. A comparison of sources of odd nitrogen production from 1974 through 1993 in the Earth’s middle atmosphere as calculated using a two-dimensional model. J Geophys Res 101: 6729–6740. https://doi.org/10.1029/95JD03386. [CrossRef] [Google Scholar]
- Wissing JM, Kallenrode M-B. 2009. Atmospheric Ionization Module Osnabrück (AIMOS): a 3-D model to determine atmospheric ionization by energetic charged particles from different populations. J Geophys Res 114(A13): A06104. https://doi.org/10.1029/2008JA013884. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.