Open Access
Issue |
J. Space Weather Space Clim.
Volume 14, 2024
Topical Issue - Space Climate: Long-term effects of solar variability on the Earth’s environment
|
|
---|---|---|
Article Number | 37 | |
Number of page(s) | 22 | |
DOI | https://doi.org/10.1051/swsc/2024030 | |
Published online | 10 December 2024 |
- Akhmetzyanov L, Sánchez-Salguero R, García-González I, Domínguez-Delmás M, Sass-Klaassen U. 2023. Blue is the fashion in Mediterranean pines: New drought signals from tree-ring density in southern Europe. Sci Total Environ 856: 1–15. https://doi.org/10.1016/j.scitotenv.2022.159291. [CrossRef] [Google Scholar]
- Alvarez S, Ortiz C, Díaz-Pinés E, Rubio A. 2016. Influence of tree species composition, thinning intensity and climate change on carbon sequestration in Mediterranean mountain forests: a case study using the CO2Fix model. Mitig Adapt Strateg Glob Chang 21: 1045–1058. https://doi.org/10.1007/s11027-014-9565-4. [Google Scholar]
- Anthony F, Boswijk G, Fowler A. 2003. Chronology stripping as a tool for enhancing the statistical quality of tree-ring chronologies. Tree-Ring Res 59: 53–62. [Google Scholar]
- Aosaar J, Drenkhan T, Adamson K, Aun K, Becker H, et al. 2020. The effect of stump harvesting on tree growth and the infection of root rot in young Norway spruce stands in hemiboreal Estonia. For Ecol Manage 475: 118425. https://doi.org/10.1016/j.foreco.2020.118425. [CrossRef] [Google Scholar]
- Ashraf MI, Bourque CPA, MacLean DA, Erdle T, Meng FR. 2015. Estimation of potential impacts of climate change on growth and yield of temperate tree species. Mitig Adapt Strateg Glob Chang 20: 159–178. https://doi.org/10.1007/s11027-013-9484-9. [CrossRef] [Google Scholar]
- Baldwin MP, Ayarzagüena B, Birner T, Butchart N, Butler AH, et al. 2021. Sudden stratospheric warmings. Rev Geophys 59: 1–37. https://doi.org/10.1029/2020RG000708. [CrossRef] [Google Scholar]
- Baldwin MP, Gray LJ, Dunkerton TJ, Hamilton K, Haynes PH, et al. 2001. The quasi-biennial oscillation. Rev Geophys 39: 179–229. [CrossRef] [Google Scholar]
- Ball WT, Rozanov EV, Alsing J, Marsh DR, Tummon F, Mortlock DJ, Kinnison D, Haigh JD. 2019. The upper stratospheric solar cycle ozone response. Geophys Res Lett 46: 1831–1841. https://doi.org/10.1029/2018GL081501. [CrossRef] [Google Scholar]
- Ballaré CL, Cecilia Rousseaux M, Searles PS, Zaller JG, Giordano CV, Matthew Robson T, Caldwell MM, Sala OE, Scopel AL. 2001. Impacts of solar ultraviolet-B radiation on terrestrial ecosystems of Tierra del Fuego (southern Argentina). an overview of recent progress. J Photochem Photobiol B Biol 62: 67–77. https://doi.org/10.1016/S1011-1344(01)00152-X. [CrossRef] [Google Scholar]
- Bice D, Montanari A, Vučetić V, Vučetić M. 2012. The influence of regional and global climatic oscillations on Croatian climate. Int J Climatol 32: 1537–1557. https://doi.org/10.1002/joc.2372. [CrossRef] [Google Scholar]
- Blackmon ML. 1976. A climatological spectral study of the 500 mb geopotential height of the northern hemisphere. J Atmos Sci 33, 1607–1623. https://doi.org/10.1175/1520-0469(1976)033<1607:ACSSOT>2.0.CO;2. [CrossRef] [Google Scholar]
- Blomquist M, Larsson Herrera S, Hofmann J, Beram RC, Cleary M, Rönnberg J. 2020. Size matters but is big always better? Effectiveness of urea and Phlebiopsis gigantea as treatment against Heterobasidion on Picea abies stumps of variable size. For Ecol Manage 462: 117998. https://doi.org/10.1016/j.foreco.2020.117998. [CrossRef] [Google Scholar]
- Brönnimann S. 2007. Impact of El Niño-Southern oscillation on European climate. Rev Geophys 45, 1–28. https://doi.org/10.1029/2006RG000199. [Google Scholar]
- Brugnara Y, Brönnimann S, Luterbacher J, Rozanov E. 2013. Influence of the sunspot cycle on the Northern Hemisphere wintertime circulation from long upper-air data sets. Atmos Chem Phys 13: 6275–6288. https://doi.org/10.5194/acp-13-6275-2013. [CrossRef] [Google Scholar]
- Bunn A, Korpela M, Biondi F, Campelo F, Mérian P, Qeadan F, Zang C, Pucha-Cofrep D, Wernicke J. 2018. Dendrochronology program library in R. R package version 1.6.8. Avaiable at https://r-forge.r-project.org/projects/dplr/. [Google Scholar]
- Bunn AG. 2010. Statistical and visual crossdating in R using the dplR library. Dendrochronologia 28: 251–258. https://doi.org/10.1016/j.dendro.2009.12.001. [CrossRef] [Google Scholar]
- Bunn AG. 2008. A dendrochronology program library in R (dplR). Dendrochronologia 26: 115–124. https://doi.org/10.1016/j.dendro.2008.01.002. [CrossRef] [Google Scholar]
- Cai W, Borlace S, Lengaigne M, van Rensch P, Collins M, et al. 2010. Increasing frequency of extreme El Niño events due to greenhouse warming Wenju. Nat Clim Chang 256: 1–14. https://doi.org/10.1038/NCLIMATE2100. [Google Scholar]
- Carrer M, Urbinati C. 2004. Age-dependent tree-ring growth responses to climate in larix decidua and Pinus cembra. Ecology 85: 730–740. [CrossRef] [Google Scholar]
- Cecchini S, Galli M, Nanni T, Ruggiero L. 1996. Solar variability and ring widths in fossil trees. Nuovo Cim della Soc Ital di Fis C 19: 527–536. https://doi.org/10.1007/BF02523768. [CrossRef] [Google Scholar]
- Čermák P, Kolář T, Žid T, Trnka M, Rybníček M. 2019. Norway spruce responses to drought forcing in areas affected by forest decline. For Syst 28: e016. https://doi.org/10.5424/fs/2019283-14868. [CrossRef] [Google Scholar]
- Černý J, Pokorný R, Vejpustková M, Šrámek V, Bednář P. 2020. Air temperature is the main driving factor of radiation use efficiency and carbon storage of mature Norway spruce stands under global climate change. Int J Biometeorol 64: 1599–1611. https://doi.org/10.1007/s00484-020-01941-w. [CrossRef] [Google Scholar]
- Chapanov Y, Gorshkov V. 2019. Solar activity and cosmic ray influence on the climate. Geomagn Aeron 59: 942–949. https://doi.org/10.1134/S0016793219070090. [CrossRef] [Google Scholar]
- Chiodo G, Calvo N, Marsh DR, Garcia-Herrera R. 2012. The 11 year solar cycle signal in transient simulations from the whole atmosphere community climate model. J Geophys Res Atmos 117: 1–21. https://doi.org/10.1029/2011JD016393. [CrossRef] [Google Scholar]
- Chiodo G, Oehrlein J, Polvani LM, Fyfe JC, Smith AK. 2019. Insignificant influence of the 11-year solar cycle on the North Atlantic oscillation. Nat Geosci 12: 94–99. https://doi.org/10.1038/s41561-018-0293-3. [CrossRef] [Google Scholar]
- ČHMÚ. 2022. Czech Hydrometeorological Institute. Available at http://portal.chmi.cz/historicka-data/pocasi/uzemni-srazky (accessed 10.1.22). [Google Scholar]
- Chree C. 1913. Some phenomena of sunspots and of terrestrial magnetism at Kew observatory. Philos Trans R Soc London Ser A 212: 75–116. https://doi.org/10.1098/rsta.1913.00030003. [CrossRef] [Google Scholar]
- Cook ER, Seager R, Heim Jr RR, Vose RS, Herweijer C, Woodhouse C. 2010. Megadroughts in North America: placing IPCC projections of hydroclimatic change in a long-term palaeoclimate context. J Quat Sci 25: 48–61. https://doi.org/10.1002/jqs.1303. [CrossRef] [Google Scholar]
- Cook ER, Shiyatov SG, Mazepa VS, Ecology A, Branch U. 1990. Methods of dendrochronology applications. Tree-Ring Laboratory, Lamont-Ooherty Geological Observatory, Columbia University, New York, NY, USA. https://doi.org/10.1007/978-94-015-7879-0. [CrossRef] [Google Scholar]
- Coy L, Newman PA, Pawson S, Lait LR. 2017. Dynamics of the disrupted 2015/16 quasi-biennial oscillation. J. Clim. 30: 5661–5674. https://doi.org/10.1175/JCLI-D-16-0663.1. [CrossRef] [Google Scholar]
- CRU-UEA. 2023. North Atlantic Oscillation (NAO) data, Climatic Research Unit, University of East Anglia. Available at https://crudata.uea.ac.uk/cru/data/nao/index.htm (accessed 11.10.23). [Google Scholar]
- Cukor J, Vacek Z, Linda R, Vacek S, Marada P, Šimůnek V, Havránek F. 2019. Effects of bark stripping on timber production and structure of Norway Spruce forests in relation to climatic factors. Forests 10: 13–17. https://doi.org/10.3390/f10040320. [CrossRef] [Google Scholar]
- CZSO – Czech Statistical Office. 2021. Czech Statistical Office webpage Forestry – 2021, Available at https://www.czso.cz/csu/czso/home (accessed 10.1.22). [Google Scholar]
- Dasi-Espuig M, Jiang J, Krivova NA, Solanki SK, Unruh YC, Yeo KL. 2016. Reconstruction of spectral solar irradiance since 1700 from simulated magnetograms. A&A 590: 1–13. https://doi.org/10.1051/0004-6361/201527993. [Google Scholar]
- Dobor L, Hlásny T, Rammer W, Zimová S, Barka I, Seidl R. 2020. Is salvage logging effectively dampening bark beetle outbreaks and preserving forest carbon stocks? J Appl Ecol 57: 67–76. https://doi.org/10.1111/1365-2664.13518. [CrossRef] [Google Scholar]
- Drews A, Huo W, Matthes K, Kodera K, Kruschke T. 2022. The Sun’s role in decadal climate predictability in the North Atlantic. Atmos Chem Phys 22: 7893–7904. https://doi.org/10.5194/acp-22-7893-2022. [CrossRef] [Google Scholar]
- Dudok de Wit T, Kopp G, Fröhlich C, Schöll M. 2017. Methodology to create a new total solar irradiance record: making a composite out of multiple data records. Geophys Res Lett 44: 1196–1203. https://doi.org/10.1002/2016GL071866. [CrossRef] [Google Scholar]
- Floyd LE, Cook JW, Herring LC, Crane PC. 2002. SUSIM’S 11-year observational record of the solar UV irradiance. Adv Space Res 31: 2111–2120. https://doi.org/10.1016/S0273-1177(03)00148-0. [Google Scholar]
- Floyd L, Rottman G, Deland M, Pap J. 2003. 11 years of solar UV irradiance measurements from UARS. Eur Space Agency 535: 195–203. [Google Scholar]
- Foukal P, Fröhlich C, Spruit H, Wigley TML. 2006. Variations in solar luminosity and their effect on the Earth’s climate. Nature 443: 161–166. https://doi.org/10.1038/nature05072. [CrossRef] [Google Scholar]
- Fritts HC. 1976. Tree rings and climate. Academic Press Inc., New York. [Google Scholar]
- Fritts HC. 1966. Growth-rings of trees: their correlation with climate. Science 154: 973–979. https://doi.org/10.1126/science.154.3752.973. [CrossRef] [Google Scholar]
- Gray LJ, Ball W, Misios S. 2017. Solar influences on climate over the Atlantic/European sector. AIP Conf Proc 1810: 020002. https://doi.org/10.1063/1.4975498. [CrossRef] [Google Scholar]
- Gray LJ, Beer J, Geller M, Haigh JD, Lockwood M, et al. 2010. Solar influences on climate. Rev Geophys 48: RG4001. https://doi.org/10.1029/2009RG000282. [Google Scholar]
- Halberg F, Cornélissen G, Sothern RB, Czaplicki J, Schwartzkopff O. 2010. Thirty five year climatic cycle in heliogeophysics, psychophysiology, military politics, and economics. Atmos Ocean Phys 46: 40–60. https://doi.org/10.1134/S0001433810070054. [Google Scholar]
- Hall R, Erdélyi R, Hanna E, Jones JM, Scaife AA. 2015. Drivers of North Atlantic Polar Front jet stream variability. Int J Climatol 35: 1697–1720. https://doi.org/10.1002/joc.4121. [CrossRef] [Google Scholar]
- Hanewinkel M, Cullmann DA, Schelhaas MJ, Nabuurs GJ, Zimmermann NE. 2013. Climate change may cause severe loss in the economic value of European forest land. Nat Clim Chang 3: 203–207. https://doi.org/10.1038/nclimate1687. [CrossRef] [Google Scholar]
- Hartl-Meier C, Zang C, Büntgen U, Esper J, Rothe A, Göttlein A, Dirnböck T, Treydte K. 2018. Uniform climate sensitivity in tree-ring stable isotopes across species and sites in a mid-latitude temperate forest. Tree Physiol 35: 4–15. https://doi.org/10.1093/treephys/tpu096. [Google Scholar]
- Hathaway DH. 2015. The solar cycle. Living Rev Sol Phys 12: 83. https://doi.org/10.1007/lrsp-2015-4. [CrossRef] [Google Scholar]
- Helama S, Meriläinen J, Tuomenvirta H. 2009. Multicentennial megadrought in northern Europe coincided with a global El Niño–Southern Oscillation drought pattern during the Medieval Climate Anomaly. Geology: 37: 175–178. https://doi.org/10.1130/G25329A.1. [CrossRef] [Google Scholar]
- Hlásny T, Barcza Z, Barka I, Merganičová K, Sedmák R, Kern A, Pajtík J, Balázs B, Fabrika M, Churkina G. 2014. Future carbon cycle in mountain spruce forests of Central Europe: modelling framework and ecological inferences. For Ecol Manage 328: 55–68. https://doi.org/10.1016/j.foreco.2014.04.038. [CrossRef] [Google Scholar]
- Hlásny T, Barka I, Roessiger J, Kulla L, Trombik J, Sarvašová Z, Bucha T, Kovalčík M, Čihák T. 2017. Conversion of Norway spruce forests in the face of climate change: a case study in Central Europe. Eur J For Res 136: 1013–1028. https://doi.org/10.1007/s10342-017-1028-5. [CrossRef] [Google Scholar]
- Hlásny T, König L, Krokene P, Lindner M, Montagné-Huck C, et al. 2021a. Bark beetle outbreaks in europe: state of knowledge and ways forward for management. Curr For Rep 7: 138–165. https://doi.org/10.1007/s40725-021-00142-x. [CrossRef] [Google Scholar]
- Hlásny T, Turčáni M. 2013. Persisting bark beetle outbreak indicates the unsustainability of secondary Norway spruce forests: case study from Central Europe. Ann For Sci 70: 481–491. https://doi.org/10.1007/s13595-013-0279-7. [CrossRef] [Google Scholar]
- Hlásny T, Zimová S, Merganičová K, Štěpánek P, Modlinger R, Turčáni M. 2021b. Devastating outbreak of bark beetles in the Czech Republic: drivers, impacts, and management implications. For Ecol Manage 490: 119075. https://doi.org/10.1016/j.foreco.2021.119075. [CrossRef] [Google Scholar]
- Holuša J, Lubojacký J, Čurn V, Tonka T, Lukášová K, Horák J. 2018. Combined effects of drought stress and Armillaria infection on tree mortality in Norway spruce plantations. For Ecol Manage 427: 434–445. https://doi.org/10.1016/j.foreco.2018.01.031. [CrossRef] [Google Scholar]
- Jandl R. 2020. Climate-induced challenges of Norway spruce in Northern Austria. Trees For People 1: 100008. https://doi.org/10.1016/j.tfp.2020.100008. [CrossRef] [Google Scholar]
- Jones PD, Jonsson T, Wheeler D. 1997. Extension to the North Atlantic Oscillation using early instrumental pressure observations from gibraltar and south-west Iceland. Int J Climatol 17: 1433–1450. https://doi.org/10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P. [CrossRef] [Google Scholar]
- Kärhä K, Anttonen T, Poikela A, Palander T, Laurén A, Peltola H, Nuutinen Y. 2018. Evaluation of salvage logging productivity and costs in windthrown Norway spruce-dominated forests. Forests 9: 280. https://doi.org/10.3390/f9050280. [CrossRef] [Google Scholar]
- Kasatkina EA, Shumilov OI, Timonen M. 2019. Solar activity imprints in tree ring-data from northwestern Russia. J Atmos Solar Terr Phys 193: 105075. https://doi.org/10.1016/j.jastp.2019.105075. [CrossRef] [Google Scholar]
- Kjellström E, Thejll P, Rummukainen M, Christensen JH, Boberg F, Christensen OB, Maule CF. 2013. Emerging regional climate change signals for Europe under varying large-scale circulation conditions. Clim Res 56: 103–119. https://doi.org/10.3354/cr01146. [CrossRef] [Google Scholar]
- Kolář T, Čermák P, Trnka M, Žid T, Rybníček M. 2017. Temporal changes in the climate sensitivity of Norway spruce and European beech along an elevation gradient in Central Europe. Agric For Meteorol 239: 24–33. https://doi.org/10.1016/j.agrformet.2017.02.028. [CrossRef] [Google Scholar]
- Komitov B. 2021. The European beech annual tree ring widths time series, solar–climatic relationships and solar dynamo regime changes. Atmosphere (Basel) 12: 1–26. https://doi.org/10.3390/atmos12070829. [Google Scholar]
- Kopáček J, Cudlín P, Fluksová H, Kaňa J, Picek T, Šantrůčková H, Svoboda M, Vaněk D. 2015. Dynamics and composition of litterfall in an unmanaged Norway spruce. Boreal Environ Res 6095: 305–323. [Google Scholar]
- Kopp G. 2021. Greg Kopp’s TSI Page. TSI Clim. Data Rec. Available at https://spot.colorado.edu/~koppg/TSI/ (accessed 2.4.21). [Google Scholar]
- Kopp G, Krivova N, Wu CJ, Lean J. 2016. The impact of the revised sunspot record on solar irradiance reconstructions. Sol. Phys. 291: 2951–2965. https://doi.org/10.1007/s11207-016-0853-x. [NASA ADS] [CrossRef] [Google Scholar]
- Kopp G, Lean JL. 2011. A new, lower value of total solar irradiance: evidence and climate significance. Geophys Res Lett 38: 1–7. https://doi.org/10.1029/2010GL045777. [Google Scholar]
- Köppen W. 1936. Das Geographische System der Klimate, Handbuch der Klimatologie. Gebrüder Borntraeger, Berlin. [Google Scholar]
- Kotsias G, Lolis CJ, Hatzianastassiou N, Levizzani V, Bartzokas A. 2020. On the connection between large-scale atmospheric circulation and winter GPCP precipitation over the Mediterranean region for the period 1980–2017. Atmos. Res. 233: 104714. https://doi.org/10.1016/j.atmosres.2019.104714. [CrossRef] [Google Scholar]
- Krisans O, Saleniece R, Rust S, Elferts D, Kapostins R, Jansons A, Matisons R. 2020. Effect of bark-stripping on mechanical stability of Norway spruce. Forests 11: 357. https://doi.org/10.3390/f11030357. [CrossRef] [Google Scholar]
- Kukumägi M, Ostonen I, Uri V, Helmisaari HS, Kanal A, Kull O, Lõhmus K. 2017. Variation of soil respiration and its components in hemiboreal Norway spruce stands of different ages. Plant Soil 414: 265–280. https://doi.org/10.1007/s11104-016-3133-5. [CrossRef] [Google Scholar]
- Kundzewicz ZW, Radziejewski M, Pińskwar I. 2006. Precipitation extremes in the changing climate of Europe. Clim Res 31: 51–58. https://doi.org/10.3354/cr031051. [CrossRef] [Google Scholar]
- Labitzke K. 2005. On the solar cycle-QBO relationship: a summary. J Atmos Solar Terr Phys 67: 45–54. https://doi.org/10.1016/j.jastp.2004.07.016. [CrossRef] [Google Scholar]
- Laken BA, Čalogović J. 2013. Composite analysis with monte carlo methods: an example with cosmic rays and clouds. J Space Weather Space Clim 3: 1–13. https://doi.org/10.1051/swsc/2013051. [Google Scholar]
- Larsson LA. 2013. Cybis Elektronik & Data AB. Available at http://www.cybis.se/ (accessed 6.20.19). [Google Scholar]
- Laurenz L, Lüdecke HJ, Lüning S. 2019. Influence of solar activity changes on European rainfall. J Atmos Solar Terr Phys 185: 29–42. https://doi.org/10.1016/j.jastp.2019.01.012. [CrossRef] [Google Scholar]
- Leonelli G, Coppola A, Salvatore MC, Baroni C, Battipaglia G, et al. 2017. Climate signals in a multispecies tree-ring network from central and southern Italy and reconstruction of the late summer temperatures since the early 1700s. Clim Past 13: 1451–1471. https://doi.org/10.5194/cp-13-1451-2017. [CrossRef] [Google Scholar]
- Lockwood M, Owens MJ, Barnard L. 2014. Centennial variations in sunspot number, open solar flux, and streamer belt width: 2. Comparison with the geomagnetic data. J Geophys Res Space Phys, 119: 5183–5192. https://doi.org/10.1002/2014JA019972. [CrossRef] [Google Scholar]
- Lüdecke HJ, Cina R, Dammschneider HJ, Lüning S. 2020. Decadal and multidecadal natural variability in European temperature. J Atmos Solar Terr Phys 205: 105294. https://doi.org/10.1016/j.jastp.2020.105294. [CrossRef] [Google Scholar]
- Ma H, Chen H, Gray L, Zhou L, Li X, Wang R, Zhu S. 2018. Changing response of the North Atlantic/European winter climate to the 11 year solar cycle. Environ Res Lett 13: 034007. https://doi.org/10.1088/1748-9326/aa9e94. [CrossRef] [Google Scholar]
- Madronich S. 1993. The atmosphere and UV-B radiation at ground level. In: Environmental UV photobiology, Young AR, Moan J, Björn LO, Nultsch W (Eds.), Springer: Boston, MA, pp. 1–39. https://doi.org/10.1007/978-1-4899-2406-3_1. [Google Scholar]
- MAF. 2018. Report about forest and forestry conditions in the Czech Republic 2017, The Ministry of Agriculture of the Czech Republic, Prague. [Google Scholar]
- MAF. 2020. Report about forest and forestry conditions in the Czech Republic 2019, The Ministry of Agriculture of the Czech Republic, Prague. [Google Scholar]
- MAF. 2021. Report about forest and forestry conditions in the Czech Republic 2021, The Ministry of Agriculture of the Czech Republic, Prague. [Google Scholar]
- Marini L, Lindelöw Å, Jönsson AM, Wulff S, Schroeder LM. 2013. Population dynamics of the spruce bark beetle: a long-term study. Oikos 122: 1768–1776. https://doi.org/10.1111/j.1600-0706.2013.00431.x. [CrossRef] [Google Scholar]
- Marini L, Økland B, Jönsson AM, Bentz B, Carroll A, et al. 2017. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography (Cop.) 40: 1426–1435. https://doi.org/10.1111/ecog.02769. [CrossRef] [Google Scholar]
- Matějka K, Vacek S, Podrázský V. 2010. Development of forest soils in the Krkonoše Mts. in the period 1980–2009. J For Sci 56: 485–504. [CrossRef] [Google Scholar]
- Materna J. 1989. Air pollution and forestry in Czechoslovakia. Environ Monit Assessment 12: 227–239. [CrossRef] [Google Scholar]
- Matveev SM, Chendev YG, Lupo AR, Hubbart JA, Timashchuk DA. 2017. Climatic changes in the east-european forest-steppe and effects on scots pine productivity. Pure Appl Geophys 174: 427–443. https://doi.org/10.1007/s00024-016-1420-y. [CrossRef] [Google Scholar]
- Maycock AC, Matthes K, Tegtmeier S, Schmidt H, Thiéblemont R, et al. 2018. The representation of solar cycle signals in stratospheric ozone – part 2: analysis of global models. Atmos Chem Phys 18: 11323–11343. https://doi.org/10.5194/acp-18-11323-2018. [CrossRef] [Google Scholar]
- Maycock AC, Matthes K, Tegtmeier S, Thiéblemont R, Hood L. 2016. The representation of solar cycle signals in stratospheric ozone – part 1: a comparison of recently updated satellite observations. Atmos Chem Phys 16: 10021–10043. https://doi.org/10.5194/acp-16-10021-2016. [CrossRef] [Google Scholar]
- Mezei P, Potterf M, Škvarenina J, Rasmussen JG, Jakuš R. 2019. Potential solar radiation as a driver for bark beetle infestation on a landscape scale. Forests 10: 1–12. https://doi.org/10.3390/f10070604. [Google Scholar]
- Mikol M, Janda P, Spînu AP, Cat I. 2020. moderate- to high-severity disturbances shaped the structure of primary Picea abies [L.] Karst. Forest in the Southern Carpathians. Forests 11: 1315. https://doi.org/10.3390/f11121315. [CrossRef] [Google Scholar]
- Mikulenka P, Prokůpková A, Vacek Z, Vacek S, Bulušek D, Simon J, Šimůnek V, Hájek V. 2020. Effect of climate and air pollution on radial growth of mixed forests: Abies alba Mill vs. Picea abies (L.) Karst. Cent. Eur. For. J. 66: 23–36. https://doi.org/10.2478/forj-2019-0026. [Google Scholar]
- Mitchell SJ. 2013. Wind as a natural disturbance agent in forests: a synthesis. Forestry 86: 147–157. https://doi.org/10.1093/forestry/cps058. [CrossRef] [Google Scholar]
- Nascimbene J, Thor G, Nimis PL. 2013. Effects of forest management on epiphytic lichens in temperate deciduous forests of Europe – a review. For Ecol Manage 298: 27–38. https://doi.org/10.1016/j.foreco.2013.03.008. [CrossRef] [Google Scholar]
- Netherer S, Panassiti B, Pennerstorfer J, Matthews B. 2019. Acute drought is an important driver of bark beetle infestation in Austrian Norway spruce stands. Front For Glob Chang 2: 1–21. https://doi.org/10.3389/ffgc.2019.00039. [CrossRef] [Google Scholar]
- Noce S, Collalti A, Valentini R, Santini M. 2016. Hot spot maps of forest presence in the Mediterranean basin. IForest 9: 766–774. https://doi.org/10.3832/ifor1802-009. [CrossRef] [Google Scholar]
- Nováková MH, Edwards-Jonášová M. 2015. Restoration of central-european mountain norway spruce forest 15 years after natural and anthropogenic disturbance. For Ecol Manage 344: 120–130. https://doi.org/10.1016/j.foreco.2015.02.010. [CrossRef] [Google Scholar]
- Nownes AJ. 2012. Methodological Notes, Czech Statistical Office. In: Total Lobbying, Cambridge University Press, Cambridge, UK, pp. 225–232. https://doi.org/10.1017/CBO9780511840395.010. [Google Scholar]
- Økland B, Berryman A. 2004. Resource dynamic plays a key role in regional fluctuations of the spruce bark beetles Ips typographus. Agric For Entomol 6: 141–146. https://doi.org/10.1111/j.1461-9555.2004.00214.x. [CrossRef] [Google Scholar]
- Peterson CJ, Leach AD. 2008. Salvage logging after windthrow alters microsite diversity, abundance and environment, but not vegetation. Forestry 81: 361–376. https://doi.org/10.1093/forestry/cpn007. [CrossRef] [Google Scholar]
- Piovesan G, Schirone B. 2000. Winter North Atlantic oscillation effects on the tree rings of the Italian beech (Fagus sylvatica L.). Int J Biometeorol 44: 121–127. https://doi.org/10.1007/s004840000055. [CrossRef] [Google Scholar]
- Piri T. 1996. The spreading of the S type of Heterobasidion annosum from Norway spruce stumps to the subsequent tree stand. Eur J For Pathol 26: 193–204. https://doi.org/10.1111/j.1439-0329.1996.tb00839.x. [CrossRef] [Google Scholar]
- Remeš J, Bílek L, Novák J, Vacek Z, Vacek S, Putalová T, Koubek L. 2015. Diameter increment of beech in relation to social position of trees, climate characteristics and thinning intensity. J For Sci 61: 456–464. https://doi.org/10.17221/75/2015-JFS. [CrossRef] [Google Scholar]
- Remeš J, Pulkrab K, Bílek L, Podrázský V. 2020. Economic and production effiect of tree species change as a result of adaptation to climate change. Forests 11: 431. https://doi.org/10.3390/F11040431. [CrossRef] [Google Scholar]
- Rigozo NR, Nordemann DJR, Echer E, Zanandrea A, Gonzalez WD. 2002. Solar variability effects studied by tree-ring data wavelet analysis. Adv Space Res 29: 1985–1988. https://doi.org/10.1016/S0273-1177(02)00245-4. [CrossRef] [Google Scholar]
- Rigozo NR, Nordemann DJR, Souza Echer MP, Echer E, da Silva HE, Prestes A, Guarnieri FL. 2007. Solar activity imprints in tree ring width from Chile (1610–1991). J Atmos Solar Terr Phys 69: 1049–1056. https://doi.org/10.1016/j.jastp.2007.03.010. [CrossRef] [Google Scholar]
- Rimbu N, Lohmann G, Ionita M, Czymzik M, Brauer A. 2021. Interannual to millennial-scale variability of River Ammer floods and its relationship with solar forcing. Int J Climatol 41: E644–E655. https://doi.org/10.1002/joc.6715. [CrossRef] [Google Scholar]
- Rinntech. 2010. TSAP-WIN: time series analysis and presentation for dendrochronology and related applications.Available at http://www.rinntech.com (accessed 5.2.22). [Google Scholar]
- Rybníček M, Čermák P, Žid T, Kolář T. 2012. Growth responses of Picea abies to climate in the central part of the Českomoravská Upland (Czech Republic). Dendrobiology 68: 21–30. [Google Scholar]
- Rybníček M, Čermák P, Žid T, Kolář T. 2010. Radial growth and health condition of Norway spruce (Picea abies (L.) Karst.) stands in relation to climate (Silesian Beskids, Czech Republic). Geochronometria 36: 9–16. https://doi.org/10.2478/v10003-010-0017-1. [CrossRef] [Google Scholar]
- Salby ML, Shea DJ. 1991. Correlations between solar activity and the atmosphere: An unphysical explanation. J Geophys Res Atmos 96: 22579–22595. https://doi.org/10.1029/91JD02530. [CrossRef] [Google Scholar]
- Scafetta N. 2012. Multi-scale harmonic model for solar and climate cyclical variation throughout the Holocene based on Jupiter-Saturn tidal frequencies plus the 11-year solar dynamo cycle. J Atmos Solar-Terr Phys 80: 296–311. https://doi.org/10.1016/j.jastp.2012.02.016. [CrossRef] [Google Scholar]
- Scaife AA, Ineson S, Knight JR, Gray L, Kodera K, Smith DM. 2013. A mechanism for lagged North Atlantic climate response to solar variability. Geophys Res Lett 40: 434–439. https://doi.org/10.1002/grl.50099. [CrossRef] [Google Scholar]
- Schroeder LM, Lindelöw Å. 2002. Attacks on living spruce trees by the bark beetle ips typographus (Col. Scolytidae) following a storm-felling: A comparison between stands with and without removal of wind-felled trees. Agric For Entomol 4: 47–56. https://doi.org/10.1046/j.1461-9563.2002.00122.x. [CrossRef] [Google Scholar]
- Seidl R, Müller J, Hothorn T, Bässler C, Heurich M, Kautz M. 2016. Small beetle, large-scale drivers: How regional and landscape factors affect outbreaks of the European spruce bark beetle. J Appl Ecol 53: 530–540. https://doi.org/10.1111/1365-2664.12540. [CrossRef] [Google Scholar]
- Seidl R, Rammer W, Lasch P, Badeck FW, Lexer MJ. 2008. Does conversion of even-aged, secondary coniferous forests affect carbon sequestration? A simulation study under changing environmental conditions. Silva Fenn. 42: 369–386. https://doi.org/10.14214/sf.243. [CrossRef] [Google Scholar]
- Shi F, Li J, Wilson RJS. 2014. A tree-ring reconstruction of the South Asian summer monsoon index over the past millennium. Sci. Rep. 4: 1–8. https://doi.org/10.1038/srep06739. [Google Scholar]
- Shumilov OI, Kasatkina EA, Mielikainen K, Timonen M, Kanatjev AG. 2011. Palaeovolcanos, Solar activity and pine tree-rings from the Kola Peninsula (northwestern Russia) over the last 560 years Palaeovolcanos. Int J Environ Res 5: 855–864. https://doi.org/10.22059/IJER.2011.443. [Google Scholar]
- Šimůnek V, Hájek V, Prokůpková A, Gallo J. 2021a. Finding an imprint of solar and climatic cycles in tree rings of European beech (Fagus sylvatica L.). J For Sci 67: 409–419. https://doi.org/10.17221/94/2020-JFS. [CrossRef] [Google Scholar]
- Šimůnek V, Sharma RP, Vacek Z, Vacek S, Hůnová I. 2020a. Sunspot area as unexplored trend inside radial growth of European beech in Krkonoše Mountains: a forest science from different perspective. Eur J For Res 139: 999–1013. https://doi.org/10.1007/s10342-020-01302-7. [CrossRef] [Google Scholar]
- Šimůnek V, Vacek Z, Vacek S. 2020b. Solar cycles in salvage logging: National data from the Czech Republic confirm significant correlation. Forests 11: 1–22. https://doi.org/10.3390/f11090973. [Google Scholar]
- Šimůnek V, Vacek Z, Vacek S, Králíček I, Vančura K. 2019. Growth variability of European beech (Fagus sylvatica L) natural forests: Dendroclimatic study from Krkonoše National Park. Cent Eur For J 65: 92–102. https://doi.org/10.2478/forj-2019-0010. [Google Scholar]
- Šimůnek V, Vacek Z, Vacek S, Ripullone F, Hájek V, D’andrea G. 2021b. Tree rings of european beech (Fagus sylvatica L.) indicate the relationship with solar cycles during climate change in central and southern europe. Forests 12: 1–22. https://doi.org/10.3390/f12030259. [Google Scholar]
- Speer JH. 2010. Fundamentals of tree-ring research. Geoarchaeology. University of Arizona Press, Tuscon, ISBN: 0816526850. https://doi.org/10.1002/gea.20357. [Google Scholar]
- Spiecker H. 2003. Silvicultural management in maintaining biodiversity and resistance of forests in Europe – Temperate zone. J Environ Manage 67: 55–65. https://doi.org/10.1016/S0301-4797(02)00188-3. [CrossRef] [Google Scholar]
- Spiegl TC, Langematz U, Pohlmann H, Kröger J. 2023. A critical evaluation of decadal solar cycle imprints in the MiKlip historical ensemble simulations. Weather Clim Dyn 4: 789–807. https://doi.org/10.5194/wcd-4-789-2023. [CrossRef] [Google Scholar]
- St. George, S. 2014. An overview of tree-ring width records across the Northern Hemisphere. Quat. Sci. Rev. 95: 132–150. https://doi.org/10.1016/j.quascirev.2014.04.029. [CrossRef] [Google Scholar]
- StatSoft. 2013. Statistica electronic manual. Tulsa, OK, USA. http://www.statsoft.com/textbook. [Google Scholar]
- Steirou E, Gerlitz L, Apel H, Merz B. 2017. Links between large-scale circulation patterns and streamflow in Central Europe: a review. J Hydrol 549: 484–500. https://doi.org/10.1016/j.jhydrol.2017.04.003. [CrossRef] [Google Scholar]
- Surový P, Ribeiro NA, de Evora U, Pereira JS, Superior I, Lisbon DA. 2008. Influence of solar activity cycles on cork growth–a hypothesis. In: Proceedings of the 19th National Solar Physics Meeting. Dorotovič I (Ed), Hurbanovo, SÚH, Papradno, pp. 67–72. [Google Scholar]
- Tartaglione N, Toniazzo T, Orsolini Y, Otterå OH. 2020. Impact of solar irradiance and geomagnetic activity on polar NOx, ozone and temperature in WACCM simulations. J Atmos Sol-Terr Phys 209: 105398. https://doi.org/10.1016/j.jastp.2020.105398. [CrossRef] [Google Scholar]
- Tatli H, Menteş ŞS. 2019. Detrended cross-correlation patterns between North Atlantic oscillation and precipitation. Theor Appl Climatol 138: 387–397. https://doi.org/10.1007/s00704-019-02827-7. [CrossRef] [Google Scholar]
- Team R Core. 2022. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, Available at https://www.r-project.org/ (accessed 8.8.22). [Google Scholar]
- Thiele JC, Nuske RS, Ahrends B, Panferov O, Albert M, Staupendahl K, Junghans U, Jansen M, Saborowski J. 2017. Climate change impact assessment–A simulation experiment with Norway spruce for a forest district in Central Europe. Ecol Modell 346: 30–47. https://doi.org/10.1016/j.ecolmodel.2016.11.013. [CrossRef] [Google Scholar]
- Toth D, Maitah M, Maitah K, Jarolínová V. 2020. The impacts of calamity logging on the development of spruce wood prices in czech forestry. Forests 11: 1–13. https://doi.org/10.3390/f11030283. [Google Scholar]
- Trouet V, Esper J, Graham NE, Baker A, Scourse JD, Frank DC. 2009. Persistent positive North Atlantic oscillation mode dominated the medieval climate anomaly. Science 324: 78–80. https://doi.org/10.1126/science.1166349. [CrossRef] [Google Scholar]
- Tsanis I, Tapoglou E. 2019. Winter North Atlantic Oscillation impact on European precipitation and drought under climate change. Theor Appl Climatol 135: 323–330. https://doi.org/10.1007/s00704-018-2379-7. [CrossRef] [Google Scholar]
- Tsiropoula G. 2003. Signatures of solar activity variability in meteorological parameters. J Atmos Solar-Terr Phys 65: 469–482. https://doi.org/10.1016/S1364-6826(02)00295-X. [CrossRef] [Google Scholar]
- Tumajer J, Altman J, Štěpánek P, Treml V, Doležal J, Cienciala E. 2017. Increasing moisture limitation of Norway spruce in Central Europe revealed by forward modelling of tree growth in tree-ring network. Agric For Meteorol 247: 56–64. https://doi.org/10.1016/j.agrformet.2017.07.015. [CrossRef] [Google Scholar]
- Turčáni M, Hlásny T. 2007. Spatial distribution of four spruce bark beetles in north-western Slovakia. J For Sci 53: 45–52. https://doi.org/10.17221/2157-jfs. [CrossRef] [Google Scholar]
- Uğur B, Feriha Y. 2017. Forecasting risky years for forest fires depending on sunspot cycle. J. For. Res. 4: 133–142. [Google Scholar]
- Usoskin IG, Gallet Y, Lopes F, Kovaltsov GA, Hulot G. 2016. Solar activity during the Holocene: the Hallstatt cycle and its consequence for grand minima and maxima. A&A 587: 1–10. https://doi.org/10.1051/0004-6361/201527295. [Google Scholar]
- Vacchiano G, Derose RJ, Shaw JD, Svoboda M, Motta R. 2013. A density management diagram for Norway spruce in the temperate European montane region. Eur J For Res 132: 535–549. https://doi.org/10.1007/s10342-013-0694-1. [CrossRef] [Google Scholar]
- Vacek S, Hejcmanová P, Hejcman M, Vacek Z. 2013. Growth, healthy status and seed production of differently aged allochtonous and autochtonous Pinus mugo stands in the Giant Mts. over 30 years. Eur J For Res 132: 801–813. https://doi.org/10.1007/s10342-013-0721-2. [CrossRef] [Google Scholar]
- Vacek S, Hůnová I, Vacek Z, Hejcmanová P, Podrázský V, Král J, Putalová T, Moser WK. 2015a. Effects of air pollution and climatic factors on Norway spruce forests in the Orlické hory Mts. (Czech Republic), 1979–2014. Eur J For Res 134: 1127–1142. https://doi.org/10.1007/s10342-015-0915-x. [CrossRef] [Google Scholar]
- Vacek S, Prokupková A, Vacek Z, Bulušek D, Simunek V, Králícek I, Prausová R, Hájek V. 2019. Growth response of mixed beech forests to climate change, various management and game pressure in Central Europe. J For Sci 65: 331–345. https://doi.org/10.17221/82/2019-JFS. [CrossRef] [Google Scholar]
- Vacek S, Vacek Z, Bílek L, Hejcmanová P, Štícha V, Remeš J. 2015b. The dynamics and structure of dead wood in natural spruce-beech forest stand – a 40 year case study in the Krkonoše national park. Dendrobiology 73: 21–32. https://doi.org/10.12657/denbio.073.003. [CrossRef] [Google Scholar]
- Vacek S, Zingari PC, Jeník J, Simon J, Smejkal J, Vančura K. 2003. Mountain forests of the Czech Republic. Ministry of agriculture of the Czech Republic, Prague. [Google Scholar]
- Vacek Z, Cukor J, Linda R, Vacek S, Šimůnek V, Brichta J, Gallo J, Prokůpková A. 2020. Bark stripping, the crucial factor affecting stem rot development and timber production of Norway spruce forests in Central Europe. For Ecol Manage 474: 118360. https://doi.org/10.1016/j.foreco.2020.118360. [CrossRef] [Google Scholar]
- Vacek Z, Prokůpková A, Vacek S, Bulušek D, ŠimůnekV, Hájek V, Králíček I. 2021. Mixed vs. monospecific mountain forests in response to climate change: structural and growth perspectives of Norway spruce and European beech. For Ecol Manage 488: 119019. https://doi.org/10.1016/j.foreco.2021.119019. [CrossRef] [Google Scholar]
- Vacek Z, Vacek S, Cukor J. 2023. European forests under global climate change: review of tree growth processes, crises and management strategies. J Environ Manage 332: 117353. https://doi.org/10.1016/j.jenvman.2023.117353. [CrossRef] [Google Scholar]
- Vicente-Serrano SM, López-Moreno JI, Lorenzo-Lacruz J, El Kenawy A, Azorin-Molina C, Morán-Tejeda E, Pasho E, Zabalza J, Beguería S, Angulo-Martínez M. 2011. The NAO Impact on droughts in the mediterranean region BT. In: Hydrological, socioeconomic and ecological impacts of the north atlantic oscillation in the mediterranean region. Vicente-Serrano SM, Trigo RM (Eds), Springer Netherlands, Dordrecht, pp. 23–40. https://doi.org/10.1007/978-94-007-1372-7_3. [CrossRef] [Google Scholar]
- Viewegh J, Kusbach A, Mikeska M. 2003. Czech forest ecosystem classification. J For Sci 49: 85–93. [Google Scholar]
- Wang X, Zhang Q-B. 2011. Evidence of solar signals in tree rings of Smith fir from Sygera Mountain in southeast Tibet. J Atmos Sol-Terr Phys. 73: 1959–1966. https://doi.org/10.1016/j.jastp.2011.06.001. [CrossRef] [Google Scholar]
- Wang Y-M, Lean JL, Sheeley Jr NR. 2005. Modeling the Sun’s magnetic field and irradiance since 1713. Astrophys J 625: 522–538. https://doi.org/10.1086/429689. [CrossRef] [Google Scholar]
- Wibig J, Piotrowski P. 2018. Impact of the air temperature and atmospheric circulation on extreme precipitation in Poland. Int J Climatol 38: 4533–4549. https://doi.org/10.1002/joc.5685. [CrossRef] [Google Scholar]
- Wu CJ, Krivova NA, Solanki SK, Usoskin IG. 2018. Solar total and spectral irradiance reconstruction over the last 9000 years. A&A 620: 1–12. https://doi.org/10.1051/0004-6361/201832956. [Google Scholar]
- Yao Y, Luo DH. 2014. Relationship between zonal position of the North Atlantic Oscillation and Euro-Atlantic blocking events and its possible effect on the weather over Europe. Sci China Earth Sci 57: 2628–2636. https://doi.org/10.1007/s11430-014-4949-6. [CrossRef] [Google Scholar]
- Ye A, Zhu Z, Zhang R, Xiao Z, Zhou L. 2023. Influence of solar forcing on multidecadal variability in the Atlantic meridional overturning circulation (AMOC). Front Earth Sci 11: 1–16. https://doi.org/10.3389/feart.2023.1165386. [Google Scholar]
- Yeo KL, Krivova NA, Solanki SK. 2017. EMPIRE: a robust empirical reconstruction of solar irradiance variability. J Geophys Res Space Phys 122: 3888–3914. https://doi.org/10.1002/2016JA023733. [CrossRef] [Google Scholar]
- Zahradník P, Zahradníková M. 2019. Salvage felling in the Czech Republic’s forests during the last twenty years. Cent Eur For J 65: 12–20. https://doi.org/10.2478/forj-2019-0008. [Google Scholar]
- Zang C, Buras A, Cecile J, Mudelsee M, Schulz M, Pucha-cofrep D. 2018. Package “dplR” R Dendrochronology Program Library in R Version. Available at https://r-forge.r-project.org/projects/dplr/ (accessed 6.25.20). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.